4:1 종횡비를 갖는 가스터빈 블레이드 냉각 유로에서의 립-딤플 복합 냉각 특성 연구

최용덕* · 김석범* · 이용진** · 김진곤*** · 곽재수****

Rib-Dimple Compound Cooling Techniques in a Gas Turbine Blade Cooling Channels with an Aspect ratio (4:1)

Yong Duck Choi* • Seok Beom Kim* • Yong Jin Lee** • Jin Kon Kim*** • Jae Su Kwak****

ABSTRACT

Heat transfer coefficients in a dimpled channel, a ribbed channel, and a rip-dimple compound channel were measured by the transient liquid crystal technique. The channel aspect ratio, the rib height, the rip pitch, and the rib angle were 4:1, 6 mm, 60 mm and 60°, respectively. The dimple diameter and the center-to-center distance were 6mm and 7.2 mm, respectively, and the Reynolds number range was 30,000-50,000. Results showed that the heat transfer coefficients were increased by the angled rib. For the dimple-rib compound cooling cases, the heat transfer coefficients were further augmented and the thermal performance factor for the case was the highest.

초 록

본 연구에서는 딤플이 설치된 유로, 립이 설치된 유로, 립과 딤플이 함께 설치된 유로에서의 열전달 성능을 천이액정법을 이용하여 측정하였다. 실험에 사용된 유로의 종횡비(W/H)는 4이고, 립의 높이는 6 mm, 립 간 거리(*P*/*e*)는 10, 립이 설치된 각도는 60°이며, 딤플의 직경은 6 mm, 딤플 중심간 거리 (*s*/*D*)는 1.2로 하였다. 레이놀즈 수는 30000-50000에 대해 실험을 수행하였다. 립이 설치된 유로에서는 경사 립에 의해 발생된 이차유동이 열전달 계수를 증가시켰고, 립과 딤플이 함께 설치된 유로에서는 립 사이에 설치된 딤플이 열전달 계수를 더욱 증가시켰다. 열전달계수는 립과 딤플이 복합 적용된 유 로, 립이 적용된 유로, 딤플이 적용된 순으로 나타났고, 열성능계수도 립과 딤플이 복합 적용된 유로에 서 크게 나타났다.

Key Words: Gas Turbine Blade Cooling(가스터빈 블레이드 냉각), Compound Cooling(복합냉각), Dimple(딤플), Rib(립), Rectangular Channel(사각유로), Internal Cooling(내부냉각)

*	한국	항공	대학교	항공	우주	및	기	계공	학.	과	대학원	

- ** 한국항공대학교 항공우주 및 기계공학과 대학원 (국방기술품질원)
- *** 한국항공대학교 항공우주 및 기계공학과
- **** 한국항공대학교 항공우주 및 기계공학과 연락저자, E-mail: jskwak@kau.ac.kr

1. 서 론

항공, 발전, 선박 등 다양한 산업 분야에서 사 용되고 있는 가스터빈 기관의 출력과 효율 향상 을 위해 주로 터빈 입구 온도를 증가시키는 방 법이 주로 사용된다. 이에 따른 열부하증가는 가 스터빈 구성 재료가 재료의 허용온도 이상의 환 경에서 작동되도록 하므로 가스터빈은 터빈 구 성품의 내구성 유지를 위해 적절한 냉각 기법이 적용되어야 한다.

가스터빈 블레이드 내부 냉각 기법은 주로 립 냉각법, 핀-휜냉각법, 제트 충돌 냉각법, 딤플 냉 각법등이 사용되고, 내부 냉각유체의 열전달 증 진정도, 압력손실과 제작성 등을 고려하여 선택 되어진다. Han 등[1]은 립이 있는 유로의 열전달 과 압력손실 연구에서 90도로 기울어진 립과 45 도로 기울어진 립이 비슷한 열전달 계수를 보이 지만 압력손실은 45도 립에서 감소함을 밝혔다. Park 등[2]은 5종류의 종횡비를 갖는 유로에서 열전달과 압력손실을 측정하였고, 60도의 경사를 갖는 립이 있는 유로에서 압력 손실이 증가하지 만 열전달계수 증가는 가장 크게 나타남을 확인 했다. Kim 등[3]은 빠른 유속의 유로에 립, 제트 충돌장치, 딤플을 각각 설치하여 열전달 계수를 측정하였다. 비교 결과 제트충돌을 적용한 유로 에서 가장 높은 평균 열전달 계수를 보였으며,, 딤플을 가진 유로가 가장 낮은 열전달 계수를 나타냄을 보였다. 또한 열전달계수 증가 대비 압 력 손실 증가비인 열성능 측면에서는 딤플을 가 진 유로가 가장 효과적인 냉각 기법임을 확인했 다. Ligrani와 Blascovich[4]는 가스터빈 냉각 기 법 중 립과 핀, 딤플등의 기법을 연구하였고, 유 동에 돌출되어 있지 않은 립이 상대적으로 낮은 마찰계수를 나타냄을 밝혔다. Stephen 등[5]은 유로에 설치된 립을 지난 유동이 바닥면을 따라 두 개의 반대 방향으로 회전하는 이차유동을 유 발하고, 레이놀즈수, 립 간격, 높이 비에 따라 변 화하는 이차유동의 운동에너지는 표면 열전달에 영향을 끼침을 보였다.

가스터빈 블레이드 냉각에 관한 기존 연구에 서는 립 또는 딤플을 따로 적용하여 열전달을 증진시키고 있으며, 립에 의한 열전달 증진보다 딤플에 의해 전체적인 열성능이 개선되는 결과 를 보이고 있다. 이에 본 연구에서는 립과 딤플 이 함께 배치된 복합 냉각 기법의 활용 가능성 을 살피기 위해 기존의 립 냉각법과 딤플 냉각 법, 복합 냉각법의 열전달 계수분포를 측정, 비 교하였다.

2. 실험장치

Figure 1은 실험 장치의 개략도를 나타내었다. 실험 장치는 전기히터 (12kW), 벤츄리 유량계, 블로워($P_{\text{max}} = 4800 \, mm H_2 O, Q_{\text{max}} = 9.8 \, m^3 / \text{min}$), 두 개의 공압 벨브, 시험부로 구성되어 있다. 시 험부 유로의 폭은 100mm, 높이는 25mm로 종횡 비는 4:1이며 수력직경 (D_b)은 0.04m이다. 시험 부는 위, 아래 판은 15mm, 옆판은 10mm 두께 의 아크릴로 제작하였다. 아래판에 가공된 딤플 의 직경 (D)은 6mm, 립의 두께 (l)와 높이 (e) 는 각각 6mm 이다. 립이 시험부에 설치될 때, 립의 설치 각(α=60°) 이고, 립간 거리 (P)와 립 높이 비(P/e)는 10으로 하였고, 립의 높이(e) 와 수력직경(D_h)의 비(e/D_h)는 0.15, 립의 두께 와 높이의 비(l/e)는 1로 하였다. 딤플이 가공된 경우에 딤플의 깊이 (d)와 딤플 직경 (D)의 비 (d/D=0.191), 딤플 간 간격 (s)과 딤플 직경의 비는 (s/D=1.2)로 제작하였다. 립과 딤플이 있 는 시험부 역시 같은 립과 딤플의 치수로 설계 되었다. 실험에 사용된 레이놀즈수는 유로 수력 직경에 대해 30000에서 50000까지 범위에서 실 험을 수행하였고, 각 경우에 대해 열전달 계수를 측정하였다.

시험부 상판과 하판은 Fig. 2에 나타나 있다. 주유동 온도 측정을 위하여 시험부 상판의 상류 와 하류에 열전대를 각각 3개씩 설치하였고, 열 전달 계수 계산 시 각 위치에서 온도는 상하류 온도를 보간법을 사용하여 계산하였다. 열성능

Fig. 1 Blower and test section

Fig. 2 Detailed view of test section

계수를 계산하기 위한 차압 측정을 위해서 상류 와 하류에 각각 3개의 압력탭을 내어 실험 과정 에서의 차압을 측정하였다.

본 연구에서 열전달계수의 측정은 천이액정법 (transient liquid crystal technique)을 사용하였 다. 천이 액정법은 가열된 공기를 시험부로 순간 적으로 유입시켜 시간에 따른 벽면온도의 변화 를 이용하여 열전달 계수를 구하는 방법이다.

이 기법에 대한 영상처리절차와 열전달계수 계산법은 신소민 등[6], 박승덕 등[7]에 설명되어 있다.

3. 실험이론

열전달 계수 측정에 사용된 천이액정법은 시 험부 표면을 1차원 반 무한고체로 가정하고, 주 유동 온도에 급격한 변화를 주거나 속도를 빠르 게 변화시켜 시간에 따른 표면 온도를 측정하고 초기 온도에서 정해진 표면 온도까지 도달하는 데 걸린 시간을 이용하여 열전달 계수를 계산한 다. 사용된 1차원 열전도 방정식, 초기조건과 경 계조건은 다음과 같다.

$$k_w \frac{\partial^2 T}{\partial x^2} = \rho_w c_p \frac{\partial T}{\partial t} \tag{1}$$

at
$$t=0, T=T_i$$
 (2)

at
$$x = 0, -k_w \frac{\partial T}{\partial x} = h(T - T_m)$$
 (3)

as
$$x \to \infty, T = T_i$$
 (4)

주 유동에 의해 대류열전달을 갖는 표면 (x=0) 에서 시간에 따른 표면 온도 변화는 다음과 같다.

$$\frac{T_w - T_i}{T_m - T_i} = 1 - F\left(\frac{h\sqrt{\alpha t}}{k}\right)$$
(5)

여기서,
$$F(x) = 1 - \exp(x^2) erfc(x)$$

 $lpha$: 시험부의 열확산도
 k : 시험부의 열전도도
 t : 천이 시간
 h : 열전달 계수

주 유동의 온도가 시간에 따라 변할 경우, 그 변화를 아주 작은 스텝(step)변화로 가정하면 Duhamel의 중첩법을 적용할 수 있고, Eq. 5을 Eq. 6과 같이 나타낼 수 있다.[8]

$$T_{w} - T_{i} = (T_{m,0} - T_{i}) \times F\left(\frac{h\sqrt{\alpha t}}{k}\right) + \sum_{i=1}^{n} \left[F\left(\frac{h\sqrt{\alpha (t-\tau_{i})}}{k}\right)\Delta T_{m,i}\right]$$
(6)

주 유동 온도 (T_m), 표면의 초기온도 (T_i)를 측정하고, 시험 면에 도포된 액정의 색상 변화를 이용하여 초기 온도에서 표면 온도 (T_w)까지 경 과된 시간 (t)을 측정하고 Eq. 6을 이용하여 액 정이 도포된 표면의 대류 열전달 계수(h)를 계산 할 수 있다.

평균 Nusselt수는 Eq. 7과 같이 정의하였고, Nu_{D.}는 Eq. 8로 계산하였다.

$$Nu_{D_h} = \frac{hD_h}{k_m} \tag{7}$$

-306-

$$Nu_{D_{h,0}} = \frac{(f_0/8) (Re_{D_h} - 1000) Pr}{[1 + 12.7 (f_0/8)^{1/2} (Pr^{2/3} - 1)]}$$
(8)
$$D_h: 수력 직경$$
$$k_m : 주유동의 열전도율$$
$$h : 열전달 계수$$

또한 실험에 사용된 마찰계수는 각각 Eq. 9와 Eq. 10에 열성능계수는 Eq. 11로 계산하였다.

$$f_0 = \left[0.79\ln(Re_{D_h}) - 1.64\right]^{-2} \tag{9}$$

for $3000 < Re_{D_{i}} < 5 \times 10^{6}$

$$f = \frac{-(\Delta p / \Delta x) D_h}{\rho_m \overline{u^2} / 2} \tag{10}$$

$$TP = \frac{\overline{Nu_{D_h}}/Nu_{D_{h,0}}}{(f/f_0)^{1/3}}$$
(11)

4. 실험결과

Figure 3과 4, 5는 각각 유로에 립, 딤플, 립과 딤플이 설치된 경우의 Nusselt수 분포를 나타내 고 있다.

립만 설치된 경우(Fig. 3), 립의 상부에서 바닥 면보다 높은 Nusselt수가 관찰되고, 립의 하류 아래 부분에서 상류 윗 부분보다 높은 Nusselt수 가 나타나고 있다. 바닥면의 경우 립의 방향을 따라 열전달 계수가 점점 작게 나타나는 것을 볼 수 있는데, Fig. 6에서 나타낸 바와 같이 바 닥면을 따라 이차유동이 발생하기 때문에 비대 칭적인 열전달 계수 분포가 나타난다. 립을 지난 유동의 재부착과 재순환에 의해 바닥면은 립보 다 낮은 평균 열전달계수를 나타내고 있다. 립 부근 하류쪽 바닥면은 상류쪽에 비해서도 낮은 열전달계수를 보인다.

딤플이 설치된 경우(Fig. 4), 유동의 흐름 방향

for ribbed case dimpled case

compound case

으로 딤플에 의해 유동이 재 부착된 영역에서 높은 열전달계수를 보이며 딤플내부 상류영역은 재순환에 의해 상대적으로 낮은 열전달 계수를 보임을 알 수 있다. 각 딤플에서의 열전달 계수 분포는 거의 모든 딤플에서 같은 양상을 보이고, 시험부의 양쪽 벽면에서 마찰의 영향으로 유속 이 줄어들어 중심부보다 작은 열전달계수가 나 타난다.

립과 딤플이 설치된 경우(Fig. 5), 립 위에서의 열전달계수 분포는 립만 설치된 경우와 비슷하 게 나타났다. 바닥면의 경우 바닥면에서 발생한 2차유동이 딤플면을 지나게되고 딤플만 있는 경 우(Fig. 4)와 마찬가지로 재부착과 재순환이 이루 어지게 된다. 이때 딤플에 의해 발생한 효과의 영향으로 바닥면에서의 열전달계수는 평판일 때 보다 증가되어 나타나고 있다. 전체적인 거동은 립에서와 비슷하게 나타나지만, 바닥면에서의 딤

Fig. 6 Flow pattern

Fig. 7 Nusselt ratio vs Reynolds number

Fig. 8 Nusselt ratio vs Reynolds number

Fig. 9 Thermal performance vs Reynolds number

플에 의한 유동 교란의 증가로 열전달계수가 증 가하게 된다.

Figure 7에서는 평균 Nusselt수 비와 레이놀즈 수와의 관계를 나타내었다. 립이 설치된 경우와 립과 딤플이 복합 적용된 경우에는 레이놀즈수 가 증가함에 따라 Nusselt수 비가 감소함을 알 수 있고, 두 경우의 Nusselt수 비의 차이는 비슷 하게 유지되고 있다. 딤플이 설치된 유로에서의 Nusselt수 비 역시 감소하고 있지만, 레이놀즈수 의 증가에 따른 Nusselt수 비의 감소는 작게 나 타난다.

평균 Nusselt수와 압력손실계수 비를 나타낸

Fig. 8에서는 립만 있는 경우와 립과 딤플이 있 는 경우 모두 레이놀즈수가 증가할 때 압력손실 은 증가하고 평균 Nusselt수 비는 감소하는 것을 알 수 있다. 이 때 립만 있는 경우가 립과 딤플 이 있는 경우보다 압력손실이 작게 나타나는데, 이는 바닥면에 설치된 딤플에 의해 압력의 손실 이 발생했기 때문이다. 딤플만 있는 경우에는 딤 플의 직경에 비해 유로의 높이가 높기에 레이놀 즈수가 증가하여도 압력손실의 변화는 크게 나 타나지 않았다.

압력손실과 Nusselt수 비를 고려한 열성능계수 를 나타낸 Fig. 9에서는 모든 경우에 레이놀즈수 가 증가할 때 열성능 계수가 감소하는 것을 확 인할 수 있다. Fig. 8에서 압력손실이 증가하지 만 바닥면에서 딤플에 의해 증가한 열전달이 함 께 고려되었을 때 립과 딤플을 함께 설치한 경 우에 높게 나타남을 알 수 있다. 딤플만 있는 경 우 열성능계수는 레이놀즈수가 증가할 때 높은 레이놀즈수에서 립이 있는 경우보다 크게 나타 남을 볼 수 있다.

5. 결 론

본 연구에서는 립이 설치된 유로와 딤플이 설 치된 유로, 그리고 립과 딤플이 복합 적용된 유 로에서의 열전달 계수분포를 천이액정법을 사용 하여 측정하였다.

측정 결과를 바탕으로 도출한 결론은 다음과 같다.

- I) 딤플이 있는 유로의 경우 유동 방향을 따라 딤플의 하류쪽의 열전달이 잘 이루어지고, 재부착과 재순환에 의해 열전달이 증가하였 다. 압력손실은 높은 유로 높이의 영향으로 크지 않게 나타났으며 이로 인해 열성능계 수 또한 높게 나타나고 있다.
- 2) 립이 있는 유로의 경우 유로에 설치된 경사 립에 의해 바닥면을 따라 이차 유동이 발생 되었고, 이로 인해 열전달 계수도 비대칭적 으로 분포되었다.
- 립 표면의 열전달 계수는 바닥면에서 보다 크게 나타났으며, 유동의 흐름에 따라 열전

달 분포가 표면 전체에서 비대칭적으로 나 타남을 알 수 있다.

- 4) 립이 있는 유로의 바닥면에 설치된 딤플은 유로 내 열전달 계수를 증가시켰고, 딤플의 열전달 증진 효과는 레이놀즈수가 증가될 수록 크게 나타났다.
- 5) 립과 딤플이 복합 적용된 경우 유로의 바닥 면에 설치된 딤플에 의해 압력손실은 증가 하고 있지만, 열전달 또한 증가하게 되고 함께 고려한 열성능계수는 립만 있는 경우 보다 증가되는 결과로 나타났다.

후 기

이 논문은 2009년도 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구 사업임 (No. 2009-0071974)

참 고 문 헌

- Han, J. C., Glicksman, L. R., Rohsenow, W. M., "An Investigation of Heat Transfer", Vol. 21, Aug. 1978, pp. 1143~1156
- Park, J. s., Han, J. C., Huang, Y. and Ou, S., "Heat transfer performance comparisons of five different rectangular channels with parallel angled ribs", International Journal of Heat and Mass Transfer, Vol. 35, No. 11, 1992, pp. 2891-2903
- Kim, Y. W., Arellano, L., Vardakas, M. and Moon, H. K., "Comparison of Trip-Strip/ Impingement/Dimple Cooling Concepts at High Reynolds Numbers", ASME paper, GT2003-38935, 2003
- Ligrani, P. M., Oliveira, M. M. and Blaskovich, T., "Comparison of Heat Transfer Augmentation Techniques", AIAA Journal Vol. 41, No. 3, 2003
- 5. Stephens, M. A., Shih, T. I-P. and

Civinskas, K. C., "Effects of Inclined Rounded Ribs on Flow and Heat Transfer in a Square Duct", 30th AIAA Thermophysics Conference, June, 19-22, AIAA. 95-2115, 1995, PP. 1~12

 Shin, S. M., Lee, K. S., Park, S. D. and Kwak, J. S., "Measurement of the Heat Transfer Coefficient in the Dimpled Channel Effects of Dimple Arrangement and Channel Height", Journal of Mechanical Science and Technology, 2009, pp. 624~630

- 7. 박승덕, 이기선, 전창수, 곽재수, 전용민, "딤 플이 설치된 회전 유로에서의 열전달 계수 분포 측정 연구", 유체기계저널, Vol.12, No. 1, 2009, pp. 51~56
- 8. 신소민, 전창수, 곽재수, 정용운, "색상 검출 방식의 천이 액정법에서 색상 변화 시간 산 정의 정확도 향상", 대한기계학회논문집, B 권. Vol. 31, No. 11, 2007, pp. 918~925