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A STABILIZED FINITE ELEMENT COMPUTATION
OF FLOW AROUND OSCILLATING 2D BODIES

Hyung Taek Ahn"' and Raheel Rasool’

Numerical study of an oscillating body in incompressible fluid is performed.  Stabilized finite element
method comprising of Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin
(PSPG) formulations for linear triangular elements was employed to solve the 2D incompressible Navier-Stokes
equations  whereas the motion of the body was considered by incorporating the  arbitrary
Langrangian-Eulerian(ALE) formulation.  An algebraic moving mesh strategy is utilized for obtaining body
conforming mesh deformation at each time step. Two tests cases, namely motion of a circular cylinder and
of an airfoil in incompressible flow were analyzed. The model is first validated against the stationary cases
and then the capability to handle moving boundaries is demonstrated.
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1. INTRODUCTION

Solution algorithm for incompressible Navier-Stokes
equation has been evolving in several communities.
Perhaps the first successful algorithm for the equation is
the MAC algorithm of Los Alamos National Laboratory
[1]. After the MAC algorithm main stream for solving
the incompressible Navier-Stokes equation is based on
velocity project and solution of Pressure Poisson equation,
so-called segregated algorithm.  On the other hand,
advanced algorithm developed in the compressible flow
community was also applied to the incompressible flow,
such as the artificial compressibility method (ACM) [2-5].
In the Artificial compressibility method, momentum and
continuity equations are fully coupled and fully implicit.
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In the ACM, The -equation system is solved
simultaneously to the next solution state, which makes the
major difference from the segregated algorithms.

In this paper, we present the third category of the
methods, namely stabilized Finite Element method [6-9].
Stabilized Finite Element method is also a method that
couples momentum and continuity equations strongly,
hence fully implicit formulation is possible. ~ The method
is a generalization of standard Galerkin Finite Element
method that is popular in Solid mechanics. It includes
addition stabilization terms that make test function space
eventually different from the trial function space. Finite
Element Methods (FEM) is also recognized as one of the
methods whose dependency on the spatial mesh is found
to be not very strong and its ability to handle meshes of
high distortion is well known. Moreover, the effectiveness
of FEM in solid mechanics is well established as a result
of which it is proving to be a powerful tool in analyzing
complex problems involving fluid-structure interaction
(FSD).

FEM is a weighted residual based method, simplest of
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which is the Galerkin method which makes use of
identical trial and weighting functions to solve the weak
form of the governing equation. This method, when
applied to solid mechanics problems, generates symmetric
stiffness matrices which results in a stable numerical
solution. However, when a similar formulation is applied
to a fluid flow problem, the results are found to be
characterized by spurious oscillations. This instability is
mainly due to the non-symmetric nature of the convective
term of the Navier-Stokes equation which results in
spurious node-to-node oscillations primarily in the velocity
field. This behaviors becomes more pronounced for
convection-dominated  problems, ie. high Reynolds
number flows.

Several stabilization techniques have been developed to
stabilize the Galerkin formulation for problems involving
convective transport. Of them, the Upwind based methods
employ upwind differencing of the convective operator.
Upwind differences though being inherently stable,
however are only first order accurate. This methodology is
analogous to the technique of adding artificial diffusion.
The loss of accuracy from the upwind formulations is
usually evident from the excessively dissipative nature of
the solution. One efficient way to address this instability
problem was proposed by Hughes and Brooks (Brooks
1982) in which they had proposed the addition of a term
which is a function of the residual of the assumed
solution over the governing differential equation. The
method has found wide range application for the solution
of Navier Stokes equation, both compressible and
incompressible and its robustness for different flow-physics
problems is well established. In this study we have
employed this approach in the form of Streamline
Upwind/Petrov-Galerkin (SUPG) (Brooks 1982) and the
Pressure  Stabilizing/Petrov-Galerkin  (PSPG)  (Tezduyaar
1990) formulation.

An attempt to extend the capabilities of the
SUPG/PSPG formulation to problems involving moving
boundaries is made in this study. In order to incorporate
arbitrarily motion of the object, the stabilized
Finite-Element formualtion is to be presented in the
arbitrary Lagrangian-Eulerian (ALE) frame of reference.
An efficient moving mesh strategy [10] is presented for
retaining optimal mesh quality at every time moment, and
their effectiveness is to be presented.

The outline of this paper is as follows: In the first
section general problem statement is made and the
equation governing the flow characteristics is defined. The
SUPG/PSPG based finite element flow solver is described

and the mesh moving ALE algorithm is also defined in
this section. Numerical results for the test cases of
exterior flow around a cylinder and an airfoil are
presented in the next section. Results for the cases where
the obstacles are stationary are presented first followed by
the results for moving obstacles. This is followed by the
conclusion derived from these results and the future
implementation of this methodology.

2. STABILIZED FINITE ELEMENT FORMULATION

2.1 INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Solution of incompressible Navier-Stokes equation is
desired. At an instant ¢< (0, 7) we consider a bounded
region (2, in R", with boundary I}, where n, is the
number of spatial dimensions. Then the governing
Navier-Stokes equation in incompressible form for the
evaluation of the flow variable velocity w(z,t) and
pressure p(x,t) is given as,

p(%—ku . Vu)—Vcr:O on 2,vVt€(0,7) (D
Veu=0 on 2,Vte(0,7) @

where p is the fluid density and o is the stress tensor
which is given as

oc=—pl+T (3)
with
T=2ue= ,u(Vu-O— VUT) O]

where p is the fluid viscosity. The boundary condition
associated with this problem is given as

u=g on (), 5)

neoc=h on (F,)h (6)
where (J})q is the part of boundary associated with
Dirichlet type and (1) , i with Neumann type.

2.2 STABILIZED FINITE ELEMENT FORMULATION

Suppose ~ we  have  some  suitably  defined
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finite-dimensional trial and test function space for the
velocity and pressure: Sj, VJL, Sph, and V;‘ = Sph.
The stabilized Finite Element formulation of the
incompressible Navier-Stokes equations is given as follows:
find u" € 5! and p}lES;L such that vV w"E V' and
phE S: JLE I/;L

h
17
f wh . p(%-i—uh . Vuh)d_(?

0

where 74 and 7p are the stabilization parameters for
momentum and continuity equations.

The ALE formulation is conveniently incorporated into
the stabilized finite element formulation by replacing the
convective velocity which is the relative velocity between
the material and the mesh. The formulations leads to a
system of (n,+1) simultaneous equations corresponding
to the three unknowns (u, v and p) for each nodes in two
dimensional coordinate system. In case of triangular finite
elements, as used in this study, 9x9 matrix system is
obtained for each individual element. The integration over
time was performed using the Crank-Nicolson scheme to
move to the next time level.

3. FLOW AROUND STATIONARY OBSTACLES

3.1 FLOW PAST A FIXED CIRCULAR CYLINDER
External flow around a circular cylinder is a well
studied problem and provides suitable validation parameters
for Navier Stokes solvers. For low Reynolds number i..
less than 40, the flow is found to be steady and
symmetrical about the vortex centre-line. However, beyond
this Reynolds number the flow is characterized by vortex
shedding in the form of a laminar vortex street which
gradually transitions to turbulent if the Reynolds number is
increased. Numerical simulations for flow past a circular
cylinder were carried out at Reynolds number 1000. The
flow in this regime is characterized by the separation of
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Fig. 1 Computational domain with associated boundary conditions

Fig. 2 Close-up view of the associated spatial mesh for the
cylinder case
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Fig. 3 Lift and drag coefficient for stationary cylinder at Re=1000

laminar boundary layer on the cylinder body with a
turbulent wake. Periodic Karman vortex shedding is
typically expected in this regime. Fig. 1 depicts the
problem geometry and the associated boundary conditions
for this problem. The domain was meshed with P1/P1
triangular elements as shown in Fig. 2.

Fig. 3 represents the lift and drag force time histories
for Reynolds number 1000 against the non-dimensional

Table 1 Drag coefficient comparison study for
stationary cylinder [11-13]

Cp

(Henderson 1995) 1.51
(Mittal 2008) 1.45
(Braza 1986) 1.15
Present 1.314
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Fig. 4 Velocity contour plot for the stationary cylinder at Re=1000

Fig. 5 Finite element mesh around S809 airfoil

time . As expected the nature of lift history is periodic
about the centre line as a result f the periodic vortex
shedding . Corresponding to this shedding frequency, the
Strouhal number is calculated to be equal to 0.25. The
mean drag coefficient was found to be 1.314. These
results are found to be in suitable agreement with other
established available data as suggested by Table 1.

Mesh and domain independency was also carried out by
comparing the results of domains of different dimensions
(16D, 24D and 30D in the vertical direction). The results
of 30D domain are reported here. Fig. 4 provides a
typical velocity contour plot once the vortex shedding has
become periodic.

3.2 FLOW PAST A FIXED AIRFOIL
Numerical simulations for flow past an airfoil was

Fig. 6 Velocity contours for stationary airfoil at Re = 1000

Fig. 7 Mesh deformation with translation of the circular cylinder
along the cross-flow (vertical) direction
|
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Fig. 8 Lift coefficient history for the oscillating cylinder at
Re =1000.

carried out. S809 airfoil was used for this purpose. The
extent and the nature of the spatial domain were kept
same as that of the previous case of the cylinder
described in Fig. 1 Fig. 5 provides an illustration for the
mesh used to analyze this problem. The mesh in the
immediate vicinity of the airfoil was kept intensely dense
in an effort to resolve the boundary layer. This can
further be improved with the use of anisotropic triangular
elements. The analysis was carried out at Reynolds
number 1000 based on the chord length with the airfoil at
zero angle of attack.

A time step of size 0.01 was used and results were
considered once the flow had become uniform and the
resulting forces had stabilized. The drag coefficient was
found to be 0.134 while the lift coefficient was discovered
to be 0.037. Velocity contours for this case are shown in
Fig. 6.

4. FLOW AROUND MOVING OBSTACLES

The modified SUPG/PSPG formulation with the
incorporated ALE scheme was employed to the test cases
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Fig. 9 Pressure contours plots during the oscillatory cycle of the
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Fig. 10 Lift coefficient history for oscillating foil case at Re = 1000
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discussed in the preceding section. Same mesh as that
used in the pure Eulerian case was used to start the
simulation. The mesh was then updated at each time-step
to adjust to the motion of the obstacle. The mesh
deformation was regulated by using an efficient algebraic
scheme (Ahn 2009) [10]. In this scheme, the domain was
divided into three sub-domains. The region in the
immediate vicinity of the moving body moved rigidly with
the body, while the region farthest away from the body
remained fixed. The mesh motion is damped out in the
middle, buffer region through a weighting parameter which
is a function of the distance from the centre of the
moving body to the mesh points under consideration. In
this analysis, predefined rigid body motion in cross flow
(y) direction was considered. For both the cases, the
rigid-body motion was defined as a function oscillating in
time along the vertical axis.

4.1 FLOW PAST A OSCILLATING CIRCULAR CYLINDER

The maximum amplitude for the translating of the body
was | units away from the mean position. Mesh motion
of oscillating cylinder is displayed in Fig. 7. The resulting
time history of the lift force coefficient for the oscillating
cylinder is shown in Fig. 8. The interaction of multiple
frequencies is evident from this plot, one being contributed
by the translation motion of the body while the high
frequency component is due to the vortex shedding from
the cylinder. Fig. 9 provides a screen shots of the

Fig. 11 Pressure contours plots during the oscillatory cycle
of the S809 airfoil

pressure field around the cylinder during one of its
oscillating period.

4.2 FLOW PAST AN OSCILLATING AIRFOIL
Same results for the oscillating S809 are given in
Figure 10 and Figure 11.  (Cp)  for the airfoil case

appears to be zero, this is consistent with the results
obtained earlier for stationary cases where the lift
coefficient for zero degree angle of attack was found to
be very small. Hence in this case, the dominant
contribution to the lift force is due to the oscillatory
motion of the foil.

5. CONCLUSIONS

Stabilized finite element method based on SUPG/PSPG
formulation was used in conjunction with arbitrary
Langrangian Eulerian formulation to analyze exterior flow
around moving rigid obstacles. The approach was applied
to incompressible viscous flow problems using triangular
finite elements with linear interpolation functions. The
ALE scheme was conveniently adopted to the finite
element formulation and resulted in effective representation
of flow properties as governed by moving boundaries. The
formulation was first validated against the established case
of a stationary cylinder immersed in incompressible fluid.
The capability to handle moving boundary was then
demonstrated for the oscillating cylinder and oscillating
airfoil. Future intent is to apply the stabilized finite
element formulation with the ALE scheme to three
dimensional rotating objects typically wind turbine blades.
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