Molecular Behavior of $SF_6+H_2$ Structure II Hydrates

sII $SF_6+H_2$ 하이드레이트의 분자 거동

  • Published : 2011.11.16

Abstract

Sulfur hexafluoride ($SF_6$), one of the most potent greenhouse gases, is known as a hydrate former and has been studied at the high pressure up to 1.3 GPa with gas mixtures and with aqueous surfactant. Since we regard $SF_6$ as a potential promoter molecule that can stabilize hydrate structure more effectively compare to the other promoters, further investigation is required to verify the stabilizing ability of $SF_6$ in the hydrate structure. However, the insoluble nature of $SF_6$ in water or gases hinders fine scale analyses. This work discusses the data obtained by using molecular dynamics simulations of structure II (sII) clathrate hydrates containing $SF_6$ and $H_2$. The simulations were performed using the TIP4P/Ice model for water molecule and a previously reported $SF_6$ molecular model (optimized at the pure $SF_6$ single phase system (Olivet and Vega, 2007)), and a $H_2$ molecular model (adapted from the THF+$H_2$ hydrate system (Alavi et al., 2006)). The simulations are performed to observe the stability of $SF_6$ and $H_2$ in the sII clathrate hydrate system with varying temperature and pressure conditions and occupancies of $SF_6$ and $H_2$, which cannot be easily tuned experimentally. We observe that stability of H2 enclathrated in the hydrate structure more affected by the occupancy of $SF_6$ molecules and temperature than pressure, which ranges from 1 to 100 bar.

Keywords