Calibrating the stellar velocity dispersion in near-IR

  • Kang, Wol-Rang (Department of Physics and Astronomy, Seoul National University) ;
  • Woo, Jong-Hak (Department of Physics and Astronomy, Seoul National University)
  • Published : 2011.04.05

Abstract

The correlation between black hole mass and galaxy stellar velocity dispersion gives an important clue on the black hole growth and galaxy evolution. In the case of AGN, however, it is extremely difficult to measure stellar velocity dispersions in the optical spectra since AGN continuum dilutes stellar absorption features. In contrast, stellar velocity dispersions of active galaxies can be measured in the near-IR, where AGN-to-star flux ratio is much smaller, particularly with the laser-guide-star adaptive optics. However, it is crucial to test whether the stellar velocity dispersion measured from the near-IR spectra is consistent with that measured from the optical spectra. Using the TripleSpec at the Palomar 5-m Telescope, we obtained high quality spectra ranging from 1 to 2.4 micron for a sample of 35 nearby galaxies, for which dynamical black hole masses and optical stellar velocity dispersion measurements are available, in order to calibrate the stellar velocity dispersion in the near-IR. In this poster, we present the initial results based on 10 galaxies, with the stellar velocity dispersion measured in the H-band.

Keywords