C-7

Development of Cobalt-free $La_xSr_{4-x}Fe_6O_{13}$ ($0 \le x \le 2$) Intergrowth Cathode Material for Solid Oxide Fuel Cells

<u>이승준</u>, 용석민, 김동석, 김도경[†]

KAIST

(dkkim@kaist.ac.kr[†])

Cobalt-free La₈Sr_{4-x}Fe₆O₁₃ ($0 \le x \le 2$) oxide have been synthesized and investigated as a potential cathode material for solid oxide fuel cells (SOFCs). Sr₄Fe₆O₁₃ consists of alternating perovskite layers (Sr₄Fe₂O₈) containing iron cations in octahedral oxygen coordination and Fe₄O₅ layers where iron cations have 5-fold coordination of two types-square pyramids and trigonal bipyramids. Our preliminary electrochemical testes of pristine Sr₄Fe₆O₁₃ show a rather high area specific resistance (0.47 ρ cm² at 700°C) for ~20 μ m thick layers with CGO electrolyte. The electrochemical performances are improved by La addition up to *x*=1 (La₁Sr₃Fe₆O₁₃, 0.06 ρ cm² at 700°C). In addition, thermal expansion coefficient (TEC) values of La₁Sr₃Fe₆O₁₃ specimen demonstrated 15.1×10⁻⁶ °C⁻¹ in the range of 25-900°C, which provides good thermal expansion compatibility with the CGO electrolyte. An electrolyte supported (300- μ m-thick) single-cell configuration of La₁Sr₃Fe₆O₁₃/CGO/Ni-CGO delivered a maximum power density of 584 mWcm⁻² at 700°C. In addition, an anode supported single cell by YSZ electrolyte (10- μ m-thick) with a porous CGO interlayer between the cathode and the electrolyte to avoid undesired interfacial reactions exhibited 1,517 mWcm⁻² at 800°C. The unique composition of La₁Sr₃Fe₆O₁₃ with low thermal expansion coefficient and higher electrochemical properties could be a good cathode candidate for intermediate temperature SOFCs with CGO and YSZ electrolyte.

Keywords: Solid oxide fuel cells, Cathode, Electrochenical properties

C-8

Pt/MOF-5 Hybrid Composite Encapsulated with Microporous Carbon Black to Improve Hydrogen Storage Capacity and Hydrostability

<u>여신영</u>, 곽승엽[†]

서울대학교 재료공학부 (sykwak@snu.ac.kr[†])

Metal organic frameworks (MOF) have generated considerable interests as a potential candidate for hydrogen storage owing to their extremely high surface-to-volume ratio and low density. In this study, Pt nanoparticles of about 3 nm in size were introduced outside MOF-5 [Zn₄O(1,4-benzenedicarbocylate)3], which was then encapsulated with hydrophobic microporous carbon black (denoted CB@Pt/MOF-5) in order to enhance hydrogen uptake capacity without decreasing the specific surface area and hydrostability. To study the chemical composition, morphology, crystal information, and properties of the synthesized material, a variety of techniques is employed, including WXRD, XPS, ICP-AES, FE-SEM, HR-TEM, and N2 adsorption-desorption, confirming the formation of novel hybrid composite designated CB@Pt/MOF-5 with highly crystalline structure, large specific surface area and pore volume. In addition, H₂ storage capacity for resulting material was measured using magnetic suspension microbalance at 77 and 298 K under high-pressure condition, and the hydrostability was also tested by exposing the sample to 33% relative humidity at 23°C and measuring XRD as a function of time.

Keywords: MOF-5, Pt nanoparticle, Carbon black, Spillover, Hydrogen uptake, Hydrostability