Zero-field-cooled and Field-cooled Magnetization of Plasma Treated SrRuO₃ Thin Films on SrTiO₃(001)

F. Kurnia¹*, S. J. Rhee¹, B. W. Lee¹, C. U. Jung¹, J. Cho², L. K. Joon³, M. -H. Jung³, S. -B. Shim⁴ and J. Kim⁴

¹Department of Physics, Hankuk University of Foreign Studies, Yongin, Kyounggi-do 449-791, Korea ²Department of Electrophysics, Kwangwoon University, Nowon-gu, Seoul 139-701, Korea ³Department of Physics, Sogang University, Mapo-gu, Seoul 121-742, Korea

⁴Center for Nano and Quantum Science, Korea Research Institute of Standards and Science, Yuseong-gu, Daejon 305-600, Korea

1. Introduction

Bulk SrRuO₃ has a GdFeO₃-type perovskite structure with Pbnm space group and Curie temperature (T_c) of about 160 K[1]. However, SrRuO₃ thin films on SrTiO₃(001) have shown the suppressed T_c ~150 K and the saturated moment of 1.4~1.6 µB/Ru with low resistivity of 230 µΩ cm at room temperature[2]. Briefly speaking, SrRuO₃ system is considered to be an itinerant electron magnet system with enhanced ferromagnetic spin fluctuation which plays a crucial role of using SrRuO₃ either as bottom electrode or as metal oxide junction in heterostructure devices.

Nevertheless, up to date, there is no report showing the spin fluctuation behavior due to plasma treatment on the SrRuO₃ thin film samples. Therefore, in this report, we focus on the zero-field-cooled (ZFC) and field-cooled (FC) magnetization of both as-deposited and plasma treated SrRuO₃ thin film samples. We also propose a modified empirical model to analyze the ZFC magnetization behavior. Furthermore, using this model we might explain various ZFC magnetization behaviors.

2. Experimental

25-nm of epitaxial SrRuO₃ thin film was grown by pulsed laser deposition with a KrF excimer laser(248 nm, 34 ns) on a $3x3 \text{ mm}^2$ as-received SrTiO₃(001) substrate. Films were deposited at a substrate temperature of 750° C, and under a pressure of 120 mTorr of pure oxygen. The growth rate is about 0.01 unit cell/pulse with a repetition rate 4 Hz. After films deposition, the films were placed into the rf plasma chamber with plasma power of 40 W. The temperature was maintained at 680°C under 80 mTorr of plasma gas pressure (O₂ and H₂) with 10 SCCM of flowing gas. The magnetic properties were measured in zero field cooled (ZFC) and field cooled (FC) modes using superconducting quantum interference device (SQUID) magnetometry (MPMS system of Quantum Design).

3. Results and Discussion

In the case of magnetization behavior in FC process as shown in Fig. 1, the spin moments are ordered parallel to the direction of applied field and the samples showed non-zero magnetization below Tc. However, the O_2 plasma treated SrRuO₃ shows ~0.6 µB/Ru magnetization, which is smaller value than that of as-grown sample. The atomic disorder due to induced O_2 plasma ions might be considered as the cause of the reduced magnetization. As a comparison, the H₂ plasma treated SrRuO₃ shows the nearly paramagnetic behavior even in

the FC process. The reason is related to the deep penetration depth of H_2 plasma ions compare to that of O_2 ions, which in turn may cause higher degree of atomic disorder of pseudocubic SrRuO₃ crystal on SrTiO₃ substrate.

Fig. 1. FC magnetization for 3 different SrRuO₃ thin films on SrTiO₃(001) as a function of temperature measured at 500 Oe.

In ZFC process, for both as-deposited and O_2 -plasma treated SrRuO₃ films, we observed of around ~0.25 μ B/Ru magnetization peak at about 120 K, but there was no observed magnetization peak for H₂-plasma treated SrRuO₃.

4. References

- [1] G. Cao, et.al., Phys. Rev. B 56, 321 (1997).
- [2] C. U. Jung, et.al., Appl. Phys. Lett. 84, 2590 (2004).