Energy Transfer between Dipolar-coupled Magnetic Disks by Stimulated Vortex Gyration

Hyunsung Jung¹*, Ki-Suk Lee¹, Dae-Eun Jeong¹, Youn-Seok Choi¹, Young-Sang Yu¹, Dong-Soo Han¹, Andreas Vogel², Lars Bocklage², Guido Meier², Mi-Young Im³, Peter Fischer³ and Sang-Koog Kim¹

¹National Creative Research Initiative Center for Spin Dynamics andSpin-Wave Devices, Nanospinics Laboratory, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
²Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung,Universität Hamburg, Hamburg, Germany
³Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, CA, California 94720, USA
*Corresponding author: sangkoog@snu.ac.kr, Phone: +82-2-880-5854, Fax: +82-2-885-1457

Coupled oscillations exist in many forms in nature. Popular examples are coupled pendulums and capacitively-coupled inductor-capacitor resonators. Coupling between different oscillatorsresults in energy transfer between them. Based on the concept of coupled oscillators, we explored a new type of energy transfer between physically separated magnetic nanodisks. A possible energy transfer between two coupled vortex-state disks was experimentally observed using time-resolved soft X-ray microscopy[1,2]. The rate of energy transfer from one disk to the other was deduced from the two normal modes' frequency splitting caused by dipolar interaction. The interaction strength and the energy transferrate are tunable by manipulating the relative vortex polarization in both disks as well as the separation distance between the two oscillators. We are going to presentdirect experimental observations of energy transfer and the collective normal modes in coupled vortex oscillators, and interdistance dependences. The stimulated vortex gyration demonstrated in this work is a robust means of efficient energy transfer and information-signal transport between physically separated magnetic disks, and provides for the advantages of low-energy-dissipation signal transmission and low-power signal input. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 20110000441).

References

- [1] H. Jung et al., Appl. Phys. Lett. 97, 222502 (2010).
- [2] H. Jung et al., arXiv:1011.6399v1.