R. Rajagukguk*, Hadiyawarman, K. J. Parwanta, B. W. Lee and C. Liu Department of Physics, Hankuk University of Foreign Studies

BaTiO₃ is known to be a classical ferroelectric material with Curie temperature around 120° C. Due to its wide range applications, nanocrystalline BaTiO₃ (n-BTO) has been getting more research attention over the last decade. Recently, n-BTO is reported to have a magnetic ordering at room temperature which has never been observed in bulk BTO[1,2]. It was suggested that the existence of magnetic ordering on n-BTO is due to oxygen vacancy on the surface of the crystal[1,3]. It is expected that the amount of vacancy can be controlled through sintering conditions. As the heat treatment will yield different phase of n-BTO, we believe that different heat treatment will induce changes in the magnetic properties of n-BTO.

The n-BTO powder was synthesized by using a polymer precursor method. The precursor was produced using BaCO₃, Ti(O-*i*Pr)₄, citric acid, and Ethylene glycol. The obtained precursor was heated at 600~900°C for 2-8 h in air ambient. X-ray diffraction was carried out using Rigaku diffractometer Miniflex with Cu-K_{α} radiation. The magnetization (M) was measured using a vibration sample magnetometer at room temperature.

XRD data shows that the samples which are heated at 900° have tetragonal phase while those that heated below 900° have cubic phase. The effects of heating treatment on the crystal structure and the magnetic properties of n-BTO will be discussed.

References

- R.V.K. Mangalam, Nirat Ray, Umesh V. Waghmare, A. Sundaresan, and C.N.R. Rao, Solid State Commun. 149, 1 (2009).
- [2] S. Qin, D. Liu, Z. Zuo, Y. Sang, X. Zhang, F. Zheng, H. Liu, and X. Xu, J. Phys. Chem. Lett. 2, 238 (2010).
- [3] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B 74, 161306 (2006).