Spin Seebeck Effect in Gd₃Ga₅O₁₂/YIG(Y₃Fe₅O₁₂)/Pt

Sang-II Kim¹*, Seung-Young Park², Byoung-Chul Min³, Younghun Jo², Kyung-Jin Lee¹ and Kyung-Ho Shin³

¹Department of Materials Science and Engineering, Korea University, Seoul 136-713, Korea ²Nano Material Research Team, Korea Basic Science Institute, Daejeon 305-333, Korea ³Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea

1. Introduction

It is known that the Seebeck effect is a conversion of temperature difference directly into electricity. In spintronics society, recently, spin version of Seebeck effect, the spin-Seebeck effects (SSE) was observed experimentally at room temperature[1]. This SSE is expected to useful for future spintronic and spin caloritronics applications. The SSE generates a spin current by placing ferromagnetic metal and magnetic insulator[2] in a temperature gradient. In ferromagnetic metal and insulator, the thermally generated a pure spin current induces spin voltage. The spin voltage can be measured electrically by means of the inverse spin-Hall effect (ISHE) in a paramagnetic metal[3]. In this study, we reproduced the experiment of SSE in $YIG(Y_3Fe_5O_{12})/Pt$ sample that the thermally induced spin voltage by using ISHE of a Pt film.

2. Experimental method

The experiment of the SSE in YIG(Y₃Fe₅O₁₂) film, Fig.1 (a) show a schematic illustration of the measurement system. The sample structure is substrate (Gd₃Ga₅O₁₂)/ YIG(Y₃Fe₅O₁₂, 2800nm) and Pt wires (15nm) are deposited on the YIG surface. The lengths of the YIG layer and the Pt wire along the x (y) direction are 8 mm (4 mm) and 100 mm (3 mm), respectively. Then Pt wires were attached on the YIG layer within a gap of 700mm. An in-plane magnetic field, H, is applied along the negative x direction. An uniform temperature gradient, ∇ T, is appled along the x direction. The ∇ T on the surface of the YIG layer is indirectly measured by measuring temperature difference of dummy sample (Si/SiO₂(300nm)/Pt(15nm)).

3. Results and discussion

Fig.1 (b) show the measured voltage (V) as a function of the external field (H) for the temperature difference from 0 K to 50 K. \triangle T indicates a temperature difference of the each ends of the YIG surface along the x axis. Absolute value of the measured voltage shows minimum at 0 Oe and abruptly increased then saturated when the field is over 10 Oe. When the \triangle T is 0 K, observed spin voltage is 0 V and spin voltage is increased as the \triangle T is larger.

Fig.1 (c) show the spin voltage(V) from Fig.1(b) as a function of the temperature difference by using ISHE for H=100 Oe. In this specimen, the magnitude of spin voltage is proportional to \triangle T. This result of spin voltage is consistent with the feature of the typical ISHE induced by SSE. We obtained that spin voltage for YIG/Pt is approximately 3.86 times larger than the reported results[2] in LaY₂Fe₅O₁₂/Pt at entire temperature range.

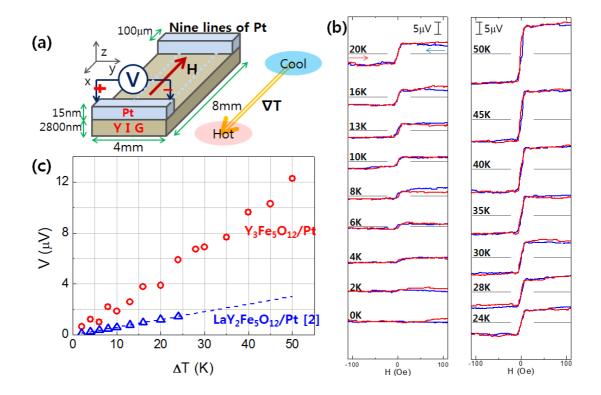


Fig. 1. (a) Schematic illustration of the YIG/Pt. (b) The field dependence of spin voltage in hot zone. (c) Spin voltage as a function of the temperature difference for H=100Oe. Red points in YIG/Pt represented our experiment results and blue points show reported results[2] in LaY₂Fe₅O₁₂/Pt.

4. Conclusion

We have measured the thermally induced spin voltage in YIG/Pt by using the inverse spin-Hall effect in a Pt wire, and we confirmed that spin voltage is proportional to temperature difference. As a further study, we have plan to measure the spin voltage behavior from the other location of the Pt wires and different structure.

5. Reference

- K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa & E. Saitoh, Nature, 455, 778-781 (2008).
- [2] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa & E. Saitoh, Nature Materials, 9, 894-897 (2010).
- [3] K. Uchida, T. Ota, K. Harii, S. Takahashi, S. Maekawa, Y. Fujikawa, E. Saitoh, Solid State Communications, 150, 524-528 (2010).