Passivity-Based Controller Design for STATCOM

Yonghao Gui*, Young Ok Lee*, Hyun Jae Kang*, Youngseong Han**, Chung Choo Chung***†
Dept. of Electrical Engineering Hanyang university*, Hysung Corporation**, Div. of Electrical and Biomedical Engineering Hanyang university***, Corresponding Author†

1. Introduction

Static Synchronous Compensator (STATCOM) based on a Voltage–Sourced Converter (VSC) has been used for enhancing controllability and increasing power transfer capability of the network. Under the classification of the number of the control degree, there are two types of the STATCOM. Because of simple structure and cost savings, both in initial manufacture and operational costs [1], we consider type 2 STATCOM in this study. For STATCOM system, various kinds of controllers have been researched [1,2]. Passivity-based control (PBC) enhances robustness of system and can be simplified realization in controller implementation as compared to the feedback linearizing control law [3]. In this paper, we propose the PBC controller based on error dynamics for the type 2 STATCOM system. The main purpose of the control design for type 2 STATCOM system is tracking the reactive current’s reference. Unlike type 1 system, type 2 system has only one degree of control, thus PBC controller designed in [4] cannot be applied to type 2 system. We design two kinds of the PBC controllers with a new control input considering the performance of all states. We design the controllers based on Lyapunov function, thus asymptotically stability of equilibrium point of the system is guaranteed.

2. STATCOM Model

\[y = \left[\begin{array}{c} \frac{R_i}{L} x_1 + \omega \frac{R_i}{L} x_1 \cos \alpha \sin \alpha \left(x_1 \sin \alpha \right) - \frac{R_i}{L} x_1 \sin \alpha \left(x_1 \cos \alpha \right) \end{array} \right] \]

where \(x = \left[x_1, x_2 \right]^T \) represents the per-unit value. \(L_i', L_c' \) and \(V_{c1}' \) represent active current, reactive current and voltage of capacitor, respectively.

The factor \(k \) is a constant and \(\alpha \) is the phase shift angle as control input of the system. Here, \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) is sufficiently smooth function, and the phase angle \(\alpha \in \mathbb{R}^3 \) is the control input. Since the function \(f(x, \alpha) \) in (1) is satisfied that \(\frac{\partial}{\partial x} f(x, \alpha) \) is nonsingular, it is satisfied the implicit function theorem.

3. Design a Passivity-Based Controller

In order to design PBC, we represent the system dynamics with Euler–Lagrange (EL) equation of motion, which has been applied to standard Lyapunov methods [3]. The general form of the EL model is

\[\dot{\xi} = \Xi + \Psi \dot{x} + \Psi_x (\alpha) x + E \]

where \(\Xi = X^T \leq 0 \), \(\dot{\Psi} = \Psi^T > 0 \), \(\Psi = \Psi^T = 0 \), \(\Psi_x = \Psi^T \). We approximate \(\cos \alpha \approx 1 \) for the simplification of controller design. Then we can rewrite (1) as general form of EL model.

\[\dot{x} = \left[\begin{array}{c} 0 \omega \frac{R_i}{L} \frac{R_i}{L} x_1 \cos \alpha \sin \alpha \left(x_1 \sin \alpha \right) - \frac{R_i}{L} x_1 \sin \alpha \left(x_1 \cos \alpha \right) \end{array} \right] \]

The reference generator makes the reference, \(x^d, x^d_1, x^d_2 \), and \(x^d_1 \), using the third–order profile. The desired dynamics is given by

\[\dot{x} = \Xi + \Psi \dot{x} + \Psi_x (\alpha) x + E \]

and we define \(\varepsilon = x^d - x \), then the error dynamics is obtained by subtracting (2) from (3) as follows:

\[\dot{\varepsilon} = \Xi + \Psi \dot{x} + \Psi_x (\alpha) x \]

Let consider

\[V_{str} = \frac{1}{2} x^T \Phi e \]

where \(\Phi e = \Xi + \Psi \dot{x} + \Psi_x (\alpha) x \) is the error dynamics.
as a Lyapunov function candidate. The derivative of this function (4) along the trajectories of the error dynamics results in

\[V_{\alpha i}=e_i^T\Xi e_i+\frac{k_o}{E}e_i^2-\frac{k_o}{E}e_i^2\sin\alpha \]

(5)

Since \(\Xi=\Xi^T<0 \) in the system, our task is to find a control law input to a stabilize the system (5) at equilibrium point. If we take a control input

\[\sin\alpha=\frac{k_o}{E}e_i^2-\frac{k_o}{E}e_i^2\sin\alpha+\nu \]

(6)

where

\[\rho_0=sgn\left(\frac{k_o}{E}e_i^2-\frac{k_o}{E}e_i^2\right)\right)\nu=\frac{f_s(e,\dot{e})}{}, \]

then the problem is redefined as finding the feedback control law \(\nu \). Here, the signum function is defined as

\[sgn(\nu)=\begin{cases} 1, & \eta > 0 \\ 0, & \eta = 0 \\ -1, & \eta < 0 \end{cases} \]

We add \(\rho_0 \) to avoid the input saturation. If \(\nu \) is taken as a positive value, then \(V_{\alpha i} \) is negative definite, i.e., the equilibrium point of the system is asymptotically stable by Lyapunov theorem [13]. We propose two kinds of the full state feedback controllers \(\nu \) as a function of error, \(f_s(e,\dot{e}) \), to improve the transient performance of all states. The control law \(\nu \) as follows:

1) Controller 1 (square function):

\[\nu_1=\sum_{i=1}^{3}\rho_i^2e_i^2, \quad \rho_i \geq 0, \quad i=1,2,3 \]

(7)

In (7), We find that a large weighting \(\rho_0 \) is associated to the fast settling time \(T_\nu \) of \(I_i^2 \). When \(\rho_0 \) is taken as the large value, however, the value \(\alpha \) arrives at its limit, then the states diverge.

2) Controller 2 (saturation function):

\[\nu_2=\sum_{i=1}^{3}\rho_i\cdot sgn\left(\frac{e_i}{\dot{e}_i}\right), \quad \rho_i \geq 0, \quad i=1,2,3 \]

(8)

and \(0<\dot{e}_i<1, \forall i \). Fig. 3 shows the differences between the controller 1 and controller 2. If \(\rho \) in both (7) and (8) are the same, \(\nu_2 \) has smaller value than \(\nu_1 \) for \(\dot{e}_i > 1 \). Thus the controller 2 prevents the control output \(\alpha \) from saturating for large magnitude of error. For \(\dot{e}_i < 1 \), the controller 2 forces larger control output than the controller 1, thus the transient performances such as the rising time \(T_\nu \) and settling time \(T_\nu \) are improved.

4. Simulation Results

To validate the proposed control strategies, simulations using an averaged model is implemented in MATLAB/Simulink. This model does not include power electronic devices. We simulate in the case that \(I_i^2 \) is changed from 0 to 1pu generated in the form of third-order profile during 10ms. At \(I_i^2=1\text{pu} \), the system is lightly damped. Thus our approaches is based on the worst-case performance optimization. Fig. 4 shows that the response of the system with the weighting \(\rho_i=1, \rho_i=60 \) and \(\rho_i=40 \). The dashed curve is the desired value. With controller 1, \(T_\nu \) of \(I_i^2 \) is about 58ms, which is shown by dashed-dot curve. With controller 2, \(T_\nu \) of \(I_i^2 \) is about 32ms, which is shown by solid curve, smaller than the controller 1. The tendency of the \(V_{\alpha i} \) response is the same as that of the \(I_i^2 \) response. And the overshoot \%OS of \(I_i^2 \) is increased by using the controller 2.

5. Conclusion

In this paper, the STATCOM having only one control input degree is considered to design a nonlinear controller. PBC based on a new control input is designed for robustness and asymptotically stable. In order to solve the control output saturation problem, the saturation function is applied for the state feedback and the performance is compared to the square function. It is shown that the saturation function with PBC achieves faster settling time of the system than the square function.

6. Acknowledgement

This work was supported by the Power Generation and Electricity Delivery of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Knowledge Economy, Republic of Korea (No. 2010T100100346).

REFERENCES

