RF magnetron sputtering법으로 ITO 위에 증착한 yttrium oxide의 특성

Fabrication of yttrium oxide thin film on ITO by RF magnetron sputtering for TTFT

방준호*, 정제헌, 송풍근 부산대학교 재료공학과(E-mail:pksong@pusan.ac.kr)

초 록: TTFT(Transparent TFT)의 유전체로 사용되는 절연층으로 사용이 기대되는 yttrium oxide를 ITO 위에 RF magnetron sputtering법으로 상온 증착하고 구조적 특성을 분석하고 조성 및 표면 상태를 확인하였으며 유전 특성을 분석하였다.

1. 서론

TTFT에 대한 높은 관심으로 절연층의 중요성이 강조되고 있다. 높은 스위칭 특성을 나타내기 위해서는 고품질의 유전체를 절연층으로 사용하는 것이 필수적이다. 특히 우수한 유전 특성을 갖는 yttrium oxide는 a-Si:H TFT에 적용되어 사용되어 왔다. 하지만 상업적으로 유리한 sputtering 법을 이용하여 yttrium oxide를 상온에서 증착하여 특성을 분석한 연구는 부족한 실정이다. 고효율의 TTFT 제조를 위해서는 yttrium oxide의 최적화가 절실히 요구되고 있다.

2. 본론

본 연구에서는 bottom gate 방식과 동일하게 유리 기판 위에 ITO를 증착한 후 그 위에 yttrium oxide를 증착하여 그 특성을 평가하였다. 기판은 non-alkali glass를 사용하였고, ITO의 두께는 150 nm로 하였다. 측정을 위해 상부 전극은 Al을 사용하여 2 mm \times 1 mm의 크기로 증착하였다. yttrium oxide는 RF power 및 산소 함량을 변화시키면서 magnetron sputtering법으로 150 nm의 두께로 증착하였다. 모든 공정은 상온에서 이루어졌다. 구조적 특성은 XRD를 이용하여 분석하였고, EDX를 이용하여 표면 조성을 확인하였다. 또한 Capacitance를 측정하여 유전율을 계산하여 박 막의 유전 특성을 분석하였다. C-V curve를 통해 yttrium oxide 박막의 유전율을 분석한 결과 최대 $15\epsilon_0$ 을 나타내었다.

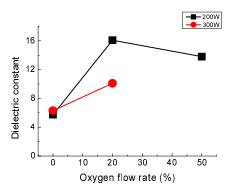


Fig. 1. dielectric constant of Y_2O_3 layers by RF magnetron sputtering under various RF powers and oxygen flow rates.

3. 결론

본 연구에서는 상업적으로 유리한 sputtering법을 이용한 상온 공정으로 제조한 yttrium oxide의 물성을 평가하였다. 다른 공정으로 고온에서 제조한 고품질의 박막과 유사한 수준의 유전 특성을 나타냈으며 100kHz 대의 주파수에서도 안정적인 물성을 나타내었다.