IPMSM의 센서리스구동을 위한 온라인 파라미터 추정

현병조, 남광희 포항공과대학교

Online parameter estimation for Sensorless contorl of IPMSM

Byongjo Hyon, Kwanghee Nam POSTECH

ABSTRACT

영구자석 동기 전동기의 센서리스 구동에 있어서 위치와 속도를 정확히 추정하는 것이 중요하다. 정확한 위치와 속도의 추정을 위해서는 정확한 모터 파라미터가 필요한데, 특히나 magnetic saturation에 의한 q-축 인덕턴스의 영향이 가장 크기 때문에 이 논문에서는 매입형 영구자석 동기 전동기(IPMSM)의 센서리스 구동을 위한 q축 인덕턴스 추정에 대한 시뮬레이션 결과와 실험 결과를 나타내었다.

1. 서론

영구자석 동기 전동기는 높은 효율성, 강인성 등의 이점으로 인해 많은 산업체 및 전기 자동차 분야에서 사용되고 있다. 영 구자석 동기 전동기를 구동하는데 있어서 회전자의 위치를 정 확히 추정하는 것이 중요하다. 회전자의 위치를 얻기 위해서는 홀센서, 엔코더 등의 센서가 필요하지만 경제성, 장비의 소형화 등으로 인해 최근에는 센서리스 기술이 요구되어지고 있다. 이 러한 센서리스 기반의 모터 제어에 있어서 회전자의 정확한 위 치 정보와 속도 정보를 추정하기 위해서 정확한 모터 파라미터 가 필요하다. 여러 모터 파라미터 중에서도 인덕턴스의 추정, 특히 q-축 인덕턴스 추정이 중요하다. 이는 전류의 양이 커지 면서 생기는 magnetic saturation로 인해 d-축 인덕턴스보다 q-축 인덕턴스가 더욱 영향을 받기 때문이다. 이 논문에서 EEMF모델 기반의 센서리스 제어^[1]에 있어서 회전자의 위치 및 속도 정보의 정확성을 높이기 위해서 정상상태의 IPMSM모 델을 바탕으로 recursive least square(RLS)알고리즘을 이용한 모터 파라미터, 특히 q-축 인덕턴스의 추정방법^[2]에 대해 시뮬 레이션 결과와 실험 결과로 확인하였다.

2. 온라인 파라미터 추정 원리

2.1 IPMSM 모델

기존의 IPMSM모델은 식(1)과 같이 표현된다.

$$\begin{bmatrix} v_d \\ v_q \end{bmatrix} = \begin{bmatrix} R_a + pL_d & -wL_q \\ wL_d & R_a + pL_q \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \begin{bmatrix} 0 \\ w\psi_a \end{bmatrix} \tag{1}$$

센서리스 제어에서는 회전자의 위치를 정확히 알 수 없으므로 수식(1)과 같은 d-q축의 모델은 사용할 수 없다. 그래서 수

식 (1)을 추정된 축 $(\Upsilon-\delta \stackrel{.}{\tau})$ 으로 변환하면 다음과 같은 모델을 얻을 수 있다.

$$\begin{bmatrix} v_{\gamma} \\ v_{\delta} \end{bmatrix} = \begin{bmatrix} R_a + pL_d & -wL_q \\ wL_q & R_a + pL_d \end{bmatrix} \begin{bmatrix} i_{\gamma} \\ i_{\delta} \end{bmatrix} + \begin{bmatrix} e_{\gamma} \\ e_{\delta} \end{bmatrix}$$
 (2)
$$\begin{bmatrix} e_{\gamma} \\ e_{\delta} \end{bmatrix} = E_{ex} \begin{bmatrix} -\sin\theta_e \\ \cos\theta_e \end{bmatrix} + (\hat{w} - w)L_d \begin{bmatrix} -i_{\delta} \\ i_{\gamma} \end{bmatrix}$$

 $\theta_e=\theta-\hat{\theta}\,(\theta$: 실제 위치, $\hat{\theta}$: 추정된 위치)이고, ''는 추정된 값을 의미한다. 이 논문에서 사용하는 센서리스 모델은 수식(2)를 바탕으로 한다.

$$\widehat{\theta_e} = \tan^{-1} \left(-\frac{\widehat{e_{\gamma}}}{\widehat{e_{\delta}}} \right) \tag{3}$$

수식(2)에서 EEMF는 추정된 위치오차 θ_e 를 포함하고 있고 수식(3)에서 처럼 추정된 EEMF를 이용하여 위치오차 θ_e 를 구할 수 있다. 이 위치 오차 θ_e 를 PI compensator를 사용해 추정된 위치 및 속도를 구한다. $^{(1)}$

2.2 RLS를 통한 온라인 파라미터 추정

정상상태에서 수식(1)은 다음과 같이 표현된다.

$$\begin{bmatrix} v_q \\ v_d \end{bmatrix} = \begin{bmatrix} R_a - wL_q \\ wL_d & R_a \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \begin{bmatrix} 0 \\ w \psi_a \end{bmatrix}$$
 (4)

파라미터 추정을 위해서 정상상태 모델을 이용하여 다음과 같은 recursive least square(RLS) 알고리즘을 사용한다.

$$\begin{aligned} \theta_{est}(k) &= \theta_{est} (k-1) + K(k) \epsilon(k) \\ \epsilon(k) &= y(k) - \phi^T(k) \theta_{est} (k-1) \\ K(k) &= P(k-1) \phi(k) [\lambda Id + \phi^T(k) P(k-1) \phi(k)]^{-1} \\ P(k) &= [Id - K(k) \phi^T(k)] P(k-1) / \lambda \end{aligned}$$
(5)

수식(3)을 $y = \phi^T \theta$ 로 표현하여 행렬식으로 나타내면 다음 수식(5)와 같고, 이를 이용하여 인덕턴스를 추정할 수 있다.[2]

$$y = \begin{bmatrix} V_q - R_a i_q - \psi_a w \\ V_d - R_a i_d \end{bmatrix}$$

$$\phi^T = \begin{bmatrix} 0 & w i_d \\ -w i_q & 0 \end{bmatrix}$$

$$\theta = \begin{bmatrix} L_q \\ L_d \end{bmatrix}$$
(5)

센서리스 제어에서 위 알고리즘을 사용하기 위해서는 id, iq,

 ${
m v_d},\,{
m v_q}$ 대신 i_{γ},i_{δ} , v_{γ},v_{δ} 를 사용한다.

위의 온라인 파라미터 추정이 적용된 센서리스 제어 블록 다이어그램은 그림 1에 나타내었다.

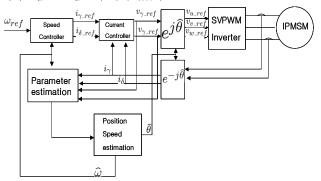


그림1. 추정된 파라미터를 사용하는 IPMSM 센서리스 시스템 Fig. 1 Speed sensorless control system of IPMSM with identified parameter

그림1에서 나타난바와 같이 $i_{\gamma},i_{\delta},\ v_{\gamma},v_{\delta}$ 를 이용하여 인덕 턴스를 추정하고 이를 적용하여 보다 정확하게 위치와 속도 정보를 추정할 수 있다.

2.3 시뮬레이션 및 실험 결과

이 논문에서는 파라미터 추정알고리즘의 타당성을 확인하기 위해서 MATLAB시뮬레이션과 실제 IPMSM을 사용하여실험을 수행하였다. 이 논문에서 사용된 모터의 파라미터는 표1에서 나타난 바와 같다. 그림2는 실험에 사용된 시스템사진이다. 실험에는 TI사의 TMS320F2018 DSP가 사용되었다.

그림2. 실험 장비 사진 Fig. 2 Experimental system

표 1 IPMSM의 모터 파라미터 Table 1 Motor parameters of an IPMSM

Input DC link voltage(V)	540	Rated speed	5000
Rated	21	Number of	6
Torque(Nm)		poles	Ů
$L_d(mH)$	3	$L_{\rm q}(mH)$	6.2
$R(\Omega)$	0.151	ψm(Wb)	0.09486
Rated	E O	Rated	220
current(A _{rms})	5.0	Voltage(V _{rms})	220

그림3에서는 1000rpm, 무부하, 정상상태에서 RLS를 이용한 q축 인덕턴스 추정 시뮬레이션 결과를 나타내었다. 0.4초에서 파라미터 추정을 시작하였고 그림3에서와 같이 측정값으로 정확하게 추정하는 것을 확인 하였다.

그림4는 100rpm 무부하, 정상 상태에서 q-축 인덕턴스 추정실험 파형을 나타낸 것이다.. 파란색 선은 측정값을 나타내고,

붉은색 선은 추정 값을 나타내었다. 시뮬레이션 결과와 마찬가지로 실험 결과 역시 측정값으로 추정해감을 확인 할 수 있다.

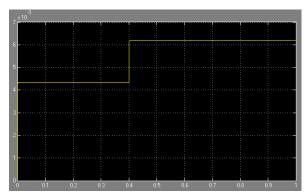


그림3. q-축 인덕턴스 추정 시뮬레이션 결과 , 1000rpm, 무부하 Fig. 3 Q-axis inductance estimation results, 1000rpm,

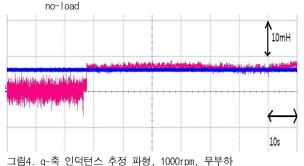


그림4. 대폭 한국한으 구경 파장, 10001pm, 구구야 Fig. 4 Q-axis inductance estimation results, 1000rpm, no-load

3. 결론

본 논문에서는 영구자석 동기 전동기의 센서리스 운전을 위해서 정상상태의 IPMSM모델을 바탕으로 RLS 알고리즘을 이용한 파라미터 추정방법에 대해서 시뮬레이션과 실험으로 확인하였다. 여러 모터 파라미터들 중에서 특히나 가장 영향력이 큰 q-축 인덕턴스의 추정에 대한 시뮬레이션, 실험 결과를 통해서 추정값이 측정값으로 잘 추정해 감을 확인 하였다.

참 고 문 헌

- [1] S.Morimoto, K.Kawamoto, M.Sanada, and Y.Takeda, "Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame," IEEE Trans.Ind.Appl.,vol.38, no.4, pp.1054-1061, Jul./Aug. 2002.
- [2] Samuel J.Underwood, Iqbal Husain," Online Parameter Estimation and Adaptive Control of Permanent-Magnet Synchronous Machines," IEEE Trans. Ind. Electron. vol.,,38, no.7, pp.2435-2443 July 2010
- [3] S.Ichikawa, M.Tomita, S.Doki, and S.Okuma, "Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory," IEEE Trans. Ind. Electron., vol.53, no.2, pp.363–371,Apr.2006