Study of CO Oxidation on Bare and TiO₂ -coated NiO/Ni(OH)₂

Jong Won Nam¹, Kwang-Dae Kim¹, Dong Wun Kim¹, Hyun OoK Seo¹, Young Dok Kim¹*, Dong Chan Lim²*

¹Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, Korea ²Materials Processing Division, Korea Institute of Materials Science, Changwon, 641-010, Korea

CO oxidaition reacitvity of bare and TiO_2 -coated $NiO/Ni(OH)_2$ nanoparticles was studied. For the deposition of TiO_2 atomic layer deposition was used, and formation of three-dimensional island of TiO_2 on $NiO/Ni(OH)_2$ could be identified. Based on the data of X-ray Photoelectron Spectroscopy, we suggest that only $Ni(OH)_2$ existed on the surface, whereas NiO disappeared upon TiO_2 deposition. Both CO adsorption and CO oxidation took place on $NiO/Ni(OH)_2$ surfaces under our experimental conditions. CO adsorption was completely suppressed after TiO_2 deposition, whereas CO oxidation activity was maintained to large extent. It is proposed that bare NiO can uptake CO under our experimental condition, whereas hydroxylated surface of NiO can be active for CO oxidation.

Keywords: CO oxidation, Ni, oxide, atomic layer deposition (ALD), TiO₂