Enhanced Magnetic Properties of BiFe1-xNixO3 Y. J. Yoo¹, J. S. Hwang¹, J. S. Park², J. -H. Kang³, B. W. Lee⁴, S. J. Lee¹, K. W. Kim⁵, Y. P. Lee¹ ¹Dept. of Physics, Hanyang University, Seoul 133-791 ²Institute of Basic Sciences and Dept. of Physics, Sungkyunkwan University, Suwon 446-740 ³Dept. of Nano & Electronic Physics, Kookmin University, Seoul 136-702 ⁴Hankuk University of Foreign Studies, Yongin, Korea ⁵Sunmoon University, Asan, Korea Multiferroic materials have been widely studied in recent years, because of their abundant physics and potential applications in the sensors, data storage, and spintronics. BiFeO₃ is one of the well-known single-phase multiferroic materials with ABO₃ structure and G-type antiferromagnetic behavior below the Neel temperature $T_N \sim 643$ K, but the ferroelectric behavior below the Curie temperature T_c~1,103 K. In this study, the BiFe_{1-x}Ni_xO₃ (x=0 and 0.05) bulk ceramics were prepared by solid-state reaction and rapid sintering with high-purity Bi₂O₃, Fe₃O₄ and NiO powders. The powders of stoichiometric proportions were mixed, as in the previous investigations, and calcined at 450°C for BiFe_{1-x}Ni_xO₃ for 24 h. The obtained powders were grinded, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, which has been heated up to 800°C and sintered in air for 20 min. The sintered disks were taken out from the oven and cooled to room temperature within several min. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu $K\alpha$ radiation. The Raman measurements were carried out by employing a hand-made Raman spectrometer with 514.5-nm-excitation Ar+ laser source under air ambient condition on a focused area of 1-\mu m diameter. The field-dependent magnetization measurements were performed with a superconducting quantum-interference-device magnetometer. Keywords: Multiferroic, BiFeO3, Magnetic properties, Ferroelectric properties