ST-P016

PROGRAM

Does N₂O react over oxygen vacancy on TiO₂(110)?

<u>김보성¹</u>, 김유권¹, Z. Li², Z. Dohnalek², B.D. Kay²

¹Department of Chemistry, Ajou University, ²Pacific Northwest National Laboratory

Molecular N₂O has bee known to react over oxygen vacancy on a reduced rutile TiO₂(110)-1×1 surface to desorb as molecular N₂ leaving oxygen atom behind. In the present study, we investigated the reaction of N₂O on rutile TiO₂(110) using temperature-programmed desorption (TPD). Our results indicate that N₂O does not react over the oxygen vacancy under a typical UHV experimental condition. On a rutile TiO₂(110)-1×1 with a well-defined oxygen vacancy concentration of 5% (2.6×10^{13} /cm²), N₂O desorption features show a monolayer peak maximum at 135 K followed by a small peak maximum at 170 K. When the oxygen vacancy is blocked with H₂O, the N₂O peak at 170 K disappears completely, indicating that the peak is due to molecular N₂O interacting with oxygen vacancy. The integrated amount of desorbed N₂O plotted against the amount of adsorbed N₂O however shows a straight line with no offset indicating no loss of N₂O during our cycles of TPD measurements. In addition, our N₂O uptake measurements at 70~100 K showed no N₂ (as a reaction product) desorption except contaminant N₂. Also, H₂O TPD taken after N₂O scattering up to 350 K indicates no change in the vacancy-related H₂O desorption peak at 500 K showing no change in the oxygen vacancy concentration after the interaction with N₂O.

Keywords: TiO₂(110), N₂O, TPD