유수에멀젼 실용화에 관한 연구

김형수⁺·박재홍¹·이성우²

A Study on the Practical Application of Oil-water Emulsion Fuel

Kim Houng Soo+, Park Jae-hong¹, Lee Sung-Woo²

1. 서론

본 시험은 일본 대화염공 제1공장 3호기 보일러의 연료를 중유(B-C) 및 신연료 (Emulsion)를 각각 사용하여 운전 했을 때, 보일러 효율을 비교 평가하는 시험으로 한국선급, 애멀젼 제작사 및 애멀젼 사용공장 입회하에 실시된 성능 시험 결과를 기술한 것으로, 계산결과, 계측, 시험방법 등에 대한 내용을 포함하고 있다.

2. 시험 설비 개요

목록	내 용	비	고
보일러 형식	RF-100F 노통연관 보일러(옥내형)		
증발량	8 Ton/hr		
증기압력	10.0 kg/cm² a(설계), 7.0 kg/cm² a(운전)		
공기온도	60 °C		
연료소비량	594.5 kg/h (MCR)		
증기사용처	수건원료의 가열 및 온도유지		

It	em	단위	모델명	측정범위	설치위치	수 량	비 고
대기조건	온도	°C	RTD ($\Phi4.8$)	0-200	FD Fan 입구	2	S
	압력	mbar	ЕЈХЗ10А-Е-М-Е	750-1150		1	S
	상대습도	%	DT 615	0-100		1	S
연료계통	유량	l	N/A	-	현장 계측기 사용	1	L
	온도	°C	RTD	0-200	Heater 후단	1	S
증기계통	압력	kg/cm²	UNIK 5000	0-15	드럼 상부	1	S
급수계통	온도	°C	RTD (Φ4.8)	0-200	급수펌프 후단	1	S
	유량	m³/h	NITTO	15	현장 계측기 사용	1	L
공기계통	온도	°C	RTD	0-200	공기 덕트	1	S
배기가스	가스분석	%	Testo 350 XL	_	배기가스 덕트	1	S
	온도	°C	TC (E-type)	0-700		3	S

3. 결과 및 결론

가. 애멀젼 연료를 연소했을 때의 보일러 효율은 B-C를 연소했을 때 보다 1.61% 저하 된 것으로 나타났으나, 증기수용처의 사 용환경에 적합한 출력을 생산하므로, 약10% 연료비용 절감을 감안하면 현재와 같은 산업용 설비의 적용에 충분한 경제성은 확보 된다고 판단된다.

나. 애멀젼 연료의 연소효과를 좀 더 정확히 판단하기 위해, 공기량 조절과 같은 운전방식 개선으로 최적의 운전점을 찾아 효 율변화를 확인하고, 설비에 미치는 영향을 지속적으로 관찰해 볼 필요가 있다.

참고문헌

[1] S.C Stultz and J/B. Kitto, "Steam It's generation and Use" 40th Edition. Babcock & Wilcox, 1992

[2] ASME PTC Committee. "ASME PTC4.0 " Fired Steam Generators". ASME. 2008

[3] Rondney R. Gay with Carl A. Palmer Michael R. Erbes. "Power Plant Performance Monitoring".

[4] 한전KPS(주). "발전설비 성능시험 및 진단" 한전kps(주). 2010

[5] 한전KPS(주). "화력 및 복합화력 발전설비 성능시험 지침서" 한전KPS(주). 2010

[6] Adda Quinn. James Roewer. "Orimulsion Combustion By-Products" Electric Power Research Institute 1998

1 박재홍(한국선급 선박해양시스템연구원 해사연구팀),E-mail:jaehpark@krs.co.kr, Tel: 042)869-9210

⁺ 김형수(한국선급 선박해양시스템연구원 해사연구팀), E-mail: hskim@krs.co.kr, Tel: 042)869-9206

² 이성우((주)한전KPS 솔루션센터 성능진단팀),E-mail:1sw2105@kps.co.kr, Tel: 031-710-4316