산화성 분위기에서 다공성 \(\text{UO}_2+x \) 소결쉘렛 제조

II. \(\text{CO}_2 \) 가스 분위기

나상호, 신희성, 김호동, 김기홍, 유명준

한국원자력연구원, 대전시 유성구 대덕대로 989번길 111
*한전원자력연구원(주), 대전시 유성구 덕진동 493
shna@kaeri.re.kr

1. 서론

세라믹형태의 이산화율라늄(\(\text{UO}_2 \))은 현재 세계원자력발전 영역의 주제로 이용되고 있다. 향후 원자력의 고갈 및 사용후핵연료의 저장부담을 해소하기 위한 속성 및 건식 기술을 이용한 사용후핵연료의 재활용에 대한 연구가 많이 수행되고 있다. 건식기술인 파이로프로세싱은 핵비확산과 핵투명성이 있는 기술로 알려져 있으며, 정처리, 전처리환, 전처리과정 및 전처리기통 등의 공정으로 구성된다. 이중에서 전처리과정은 사용후핵연료를 전처리환에 적합한 형태로 만드는 공정으로, 일반적으로 연료봉에서 \(\text{UO}_2 \) 소결쉘 lett을 인출하기 위하여 탈피복하는 과정에서 산화시킨 \(\text{U}_3\text{O}_8 \) 분말을 사용하여 성형 및 소결을 통해 수행된다. 전처리과정에서 제조된 제품의 특성을 전처리환에 중요한 영향을 미치는 인자 중의 하나이 다.

여기에서는 사용후핵연료 대신 조사되지 않은 (unirradiated) \(\text{UO}_2 \) 소결쉘 lett을 산화시키고 \(\text{U}_3\text{O}_8 \) 분말을 사용하여 성형 및 소결을 통해 수행된다. 전처리과정에서 제조된 제품의 특성은 전처리환에 중요한 영향을 미치는 인자 중의 하나이다.

2. 본론

2.1 시험 준비 및 실험 방법

약 96%\(\text{T.D.} \)의 소결밀도를 갖는 \(\text{UO}_2 \) 소결쉘 lett을 450\(^\circ \text{C} \)에서 4시간 공기분위기에서 산화시키면 \(\text{U}_3\text{O}_8 \) 분말이 된다[1,2]. \(\text{U}_3\text{O}_8 \) 분말을 유압프레스에 장입하여 3 종류의 성형압력(150, 300, 450 MPa)으로 원형형의 성형체를 제조하였다. 제조된 성형체의 성형밀도는 기하학적 방법으로 측정하였으며, 150, 300 그리고 450 MPa에서 제조된 성형체의 성형밀도는 각각 61〜63%\(\text{T.D.} \), 66〜68%\(\text{T.D.} \) 그리고 70〜72%\(\text{T.D.} \)로 측정되었다. \(\text{U}_3\text{O}_8 \)와 \(\text{UO}_2 \)의 이론밀도는 각각 8.34 g/cm\(^3\) 이와 10.96 g/cm\(^3\) 이다. 각각의 조건으로 제조된 성형체는 지르코니아 용기에 담아 벗처형(batch-type)의 소결로에 장입한 후, 이산화탄소(\(\text{CO}_2 \)) 가스 분위기에서 6조간의 소결온도(900〜1400\(^\circ \text{C} \))로 소결하였다. 소결유치시간은 각각의 소결온도에서 2시간으로 하였으며, 승온 및 냉각속도는 모두 5분당 4\(^\circ \text{C} \)로 하였다. 소결쉘 lett의 O/U비는 ASTM C-1453에 따라 측정하였으며, 소결밀도는 수중법 (immersion method)으로 측정하였다. 소결쉘 lett의 조직은 전자현미경(SEM)으로 관찰하였다.

2.2 실험 결과

1) O/U 비

Fig. 1에 \(\text{CO}_2 \) 가스 분위기에서 소결쉘 lett의 소결온도에 따른 O/U비를 나타내었다.

![Fig. 1. O/U vs. sintering temperature in the \(\text{CO}_2 \) atmosphere.](image)

그림에서 보는 바와 같이 소결쉘 lett의 O/U비는 1200\(^\circ \text{C} \)까지는 약 2.60으로 평탄하였으나 그보다 높은 온도에서는 O/U비가 급격하게 감소하다가 1500\(^\circ \text{C} \) 이상의 온도에서는 약 2.20으로 평탄화되
는 정량을 보여준다. 즉 1200°C~1400°C 구간에서 O/U비가 급격하게 변하는 경향을 보여준다.

2) 성형압력 및 소결온도에 따른 소결밀도
Fig. 2에 성형압력 및 소결온도에 따른 소결밀도를 도시하였다.

![Sintered density vs. sintering temperature](image)

Fig. 2. Sintered density vs. sintering temperature according to the varying compacting pressure.

그림에서 보는 바와 같이 성형압력이 증가하면 소결밀도가 증가하는 경향을 보여준다. 또한 소결온도가 증가하면 소결밀도도 증가하는 경향을 보여주지만, 1200°C까지는 급격하게 증가하다가 그 이상의 온도에서는 포화되는 경향을 보여준다. 또한 성형압력이 증가함수록 포화되는 경향이 두텁해질을 보여준다.

3) 소결온도에 따른 소결체의 미세구조
Fig. 3에 성형압력 300MPa로 성형한 성형체의 CO2 가스 소결분위기하에서 소결온도(소결시간: 2시간)에 따른 소결체의 미세구조를 나타내었다.

그림에서 보는 바와 같이 소결온도 900~1100°C 구간에서는 UO2+x 소결임가의 단순한 결합, 1200°C 이상이 되어야 분할임가가의 결합후 성장, 1400°C가 되어야 비로소 임가심성이 두텁게하여 생성되는 기공의 형태도 동글게 나타났다. 또한 온도에 관계없이 대부분의 기공들이 표면과 연결되는 것으로 판단된다.

![Microstructure of UO2+x sintered pellet with varying sintering temperature](image)

Fig. 3. Microstructure of UO2+x sintered pellet with varying sintering temperature (compaction pressure: 300 MPa)

3. 결론

UO2+x 분말로 성형한 성형체를 CO2 가스 분위기에서 소결하여 다음과 같은 결과를 구하였다.
- CO2 가스 분위기에서 소결하면 소결체의 O/U비는 온도 증가에 따라 감소하는 경향을 보여주었다.
- UO2+x 소결체의 소결밀도는 성형압력 증가에 따라 증대하며, 또한 소결온도가 증가함수록 소결밀도는 증가하나 1200°C 이상에서는 거의 포화되는 경향을 보여주었다.
- 소결체의 미세구조는 소결온도에 따라 UO2+x 임가접합, 임가접합후의 성장 그리고 충분한 성장과 동근 형태의 기공이 존재하는 것으로 나타났다.

4. 참고문헌

5. 감사의 글

본 연구는 교육과학기술부의 원자력중장기과학 과학 기반 연구도수의 일환으로 수행되었습니다.