FIR Observations and Simple LVG Modeling Results of L1448-MM

  • Published : 2012.04.03

Abstract

We present Herschel-PACS observations of L1448-MM, a Class 0 protostar with a prominent outflow, part of the DIGIT Key Program (PI: N. Evans). We detect numerous emission lines including CO and $H_2O$ rotational transitions, OH transitions, and [OI] forbidden transitions at wavelengths from 55 to 210 ${\mu}m$. The $H_2O$, [OI], mid-J CO (J < 23), and OH emission distributes along the outflow direction although high-J CO and other OH emission peaks at the central spatial pixel. According to our simple excitation analysis, CO seems to have two temperature components of warm and hot, which might be attributed to the PDR and shock, respectively. After exploring a wide range of physical conditions with a non-LTE LVG code, RADEX, we found that either shock alone or the combination of PDR and shock can explain the observations. The relative fraction of observed line luminosities suggest that L1448-MM is shielded from the UV radiation because $H_2O$ and CO are the dominant coolants rather than OH and [OI]. In addition, our observed fluxes match better with C-shock models rather than J-shocks. The non-LTE LVG model supports that the IR pumping process is important for OH transitions because the OH line ratios are fitted much better when the dust thermal continuum is included.

Keywords