Quantum Confinement Effect Induced by Thermal Treatment of CdSe Adsorbed on $TiO_2$ Nanostructure

  • Lee, Jin-Wook (School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University) ;
  • Im, Jeong-Hyeok (School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University) ;
  • Park, Nam-Gyu (School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University)
  • Published : 2012.02.08

Abstract

It has been known that quantum confinement effect of CdSe nanocrystal was observed by increasing the number of deposition cycle using successive ionic layer adsorption and reaction (SILAR) method. Here, we report on thermally-induced quantum confinement effect of CdSe at the given cycle number using spin-coating technology. A cation precursor solution containing $0.3\;M\;Cd(NO_3)_2{\cdot}4H_2O$ is spun onto a $TiO_2$ nanoparticulate film, which is followed by spinning an anion precursor solution containing $0.3\;M\;Na_2\;SeSO_3$ to complete one cycle. The cycle is repeated up to 10 cycles, where the spin-coated $TiO_2$ film at each cycle is heated at temperature ranging from $100^{\circ}C$ to $250^{\circ}C$. The CdSe-sensitized $TiO_2$ nanostructured film is contacted with polysulfide redox electrolyte to construct photoelectrochemical solar cell. Photovoltaic performance is significantly dependent on the heat-treatment temperature. Incident photon-to-current conversion efficiency (IPCE) increases with increasing temperature, where the onset of the absorption increases from 600 nm for the $100^{\circ}C$- to 700 nm for the $150^{\circ}C$- and to 800 nm for the $200^{\circ}C$- and the $250^{\circ}C$-heat treatment. This is an indicative of quantum size effect. According to Tauc plot, the band gap energy decreases from 2.09 eV to 1.93 eV and to 1.76 eV as the temperature increases from $100^{\circ}C$ to $150^{\circ}C$ and to $200^{\circ}C$ (also $250^{\circ}C$), respectively. In addition, the size of CdSe increases gradually from 4.4 nm to 12.8 nm as the temperature increases from $100^{\circ}C$ to $250^{\circ}C$. From the differential thermogravimetric analysis, the increased size in CdSe by increasing the temperature at the same deposition condition is found to be attributed to the increase in energy for crystallization with $dH=240cal/^{\circ}C$. Due to the thermally induced quantum confinement effect, the conversion efficiency is substantially improved from 0.48% to 1.8% with increasing the heat-treatment temperature from $100^{\circ}C$ to $200^{\circ}C$.

Keywords