인간-로봇 상호작용 기반 하지 착용형 로봇 제어 알고리 즘

Control Algorithm for the Lower Extremity Exoskeleton Robot Based on Physical Human-Robot Interaction

 $*^{\#}$ 한창수 1 , 김완수 2 , 이희돈 2 , 한정수 3

**C. S. Han(cshan@hanyang.ac.kr)¹, W. S. Kim², H. D. Lee², J. S. Han³ ¹ 한양대학교 기계공학과, ²한양대학교 기계공학과, ³한성대학교 기계시스템공학과

Key words : Lower extremity Exoskeleton robot, pHRI(Physical human-robot interaction), Torque control, Performance amplification

1. 서론

착용형 외골격 로봇은 다양한 환경에서 인간의 근력을 지원하여 이동성을 증가시키거나작업능률의 향상을 위하여 다양한 연구가 진행되어 왔다. 특히 군사적 목적 혹은 산업현장에적용하여 관련 작업자의 근력을 증강시켜 작업효율의 증가 및 작업자의 근골격계 질환의 감소를 위하여 최근 관련 연구 및 관련 시장이증가하고 있으며, 또한 착용형 외골격 로봇의적용은 인간의 두뇌, 판단능력은 그대로 차용하며 인간의 다리와 같은 우수한 접근성을 상당부분 활용하여 다양한 지형에 대한 극복능력을 향상시키거나 보조하기 위한 방향으로 활용할 수 있으며 작업자에 대한 적용을 통하여 근력의 보조를 위한 측면에서 타당한 접근이라고할 수 있다.

이러한 하지 착용형 로봇은 착용자의 동작 의도 획득 방법에 따라 크게 착용자의 생체신 호를 측정하는 방법과 착용자와 외골격 로봇 사이의 상호작용력 (interaction force)을 측정하 는 방법이 있다. 생체 신호를 사용하는 시스템 으로는 일본 츠쿠바대학에서 개발한 'Hybrid A ssistive Robot(HAL)'의 경우 착용자의 근전도 신호에서 추출한 동작의도신호 및 가속도 센서 를 통한 동작의도신호를 분석하여 로봇을 구동 한다. 생체 신호를 통한 방법은 착용자의 근육 의 수축에 의한 동작이 일어나기 전에 동작의 도를 측정할 수 있다는 장점이 있지만 센서의 전극을 피부에 부착해야 하므로 착용이 불편하 며 신호의 개인차는 물론 동일한 착용자에 대 해서도 착용시 보정이 필요하다는 단점이 있다. 반면 인간-로봇 상호작용력을 사용하는 경우.

착용자의 동작이 일어난 후 측정이 가능하지만 센서가 로봇에 부착되는 형태이기 때문에 착용이 비교적 간편하며 신호의 재현성이 보장된다는 장점이 있다. 이러한 방법을 이용하는 시스템의 경우 미국 U. C. Berkeley 에서 개발하여 Lockheed martin에서 판매하는 힘 센서 및 로봇에만 부착되는 센서를 이용한 유압식 착용형외골격 로봇 시스템인 'HULC(Human-Universal Load Carrier'가 있다[1].

본 연구에서는 산업현장 근로자 및 군사에 적용하여 근력증강을 목적으로 하기 때문에 동작의도 측정을 위한 신호의 신뢰성이 보장되어야 한다. 따라서 착용자의 신체에 부착되는 센서의 형태가 아닌 로봇에 부착되는 힘 기반 센서를 구성하여 착용자와 외골격 사이의 상호작용력을 측정하고 입력되는 신호를 통하여 외골격 로봇의 구동 가능한 인간-로봇 상호작용력기반 제어 기술을 소개하고 1DOF 모터식 구동시스템을 이용하여 제어 알고리즘을 적용할 것이다.

2. 상호작용력 기반 외골격 제어기법

착용형 외골격 로봇의 동작을 위한 인간로 봇 상호작용력을 측정하는 방법에는 주로 관절 말단부에 인간-로봇의 체결부에 F/T 센서를 사용하여 직접적인 측정을 하지만 하지 착용형로봇의 경우 보행을 통한 지면의 반발력과 축의 불일치로 인하여 동작의도를 위한 상호 작용력 이외의 힘들이 측정되기 때문에 체결부에 F/T 센서를 부착하는 방법은 적절하지 못하다. 따라서 본 연구에서는 착용형 외골격 로봇 관절에 입력 토크와 로봇의 동역학 모델을

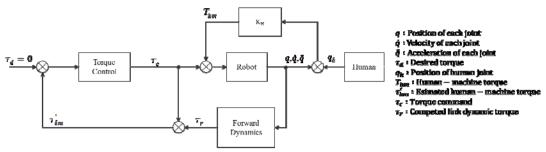


Fig. 1 Development of the lower extremity exoskeleton

통하여 산출된 출력 토크를 비교하여 가상의 인간-로봇 상호작용력을 측정하고자 한다.

Fig.1 은 인간-로봇 상호작용력을 기반으로 외골격 로봇의 관절 동작이 가능한 제어기를 것이다. au_{hm} 은 인간-로봇 도식화 항 상호작용력이며 $au_{n,m}$ 은 동역학 모델을 통해서 예측한 인간-로봇 상호작용력이다. au_{hm} 은 관절 토크제어의 입력으로 사용되며 인간-로봇 상호작용력이 '0'이 되기 위하여 관절을 제어한다. 상호작용력이 가해지는 위치에 대해서 종속적이지 않기 때문에 다양한 착용자에 대해서 독립적이며 시스템에 대해 기구적 특성에 영향을 받지 않는다.

식 (1)은 인간-로봇 상호작용력을 기반으로 하는 관절 제어 및 중력보상을 통한 로봇의 관절 구동 토크를 나타낸 것이다.

$$\tau_{in} = K_p \tau'_{hm} + K_d \tau'_{hm} + g(q) \tag{1}$$

3. 제어 실험 및 결과

pHRI 를 이용한 착용자 동작의도 파악을 위하여 전기식 모터로 구동되는 1 자유도 로봇 테스트 베드를 구축하여 실험하였으며, 적용된 센서는 엔코더 및 관절 토크 센서, 가속도 센서가 사용되었다.

1 자유도 링크 동역학 모델과 관절 동작 토크를 이용하여 인간-로봇 상호작용력을 추정하였으며, 착용자가 로봇에 힘을 가하지 않은 경우 로봇의 자중보상을 위한 토크만 생성되고, 착용자가 로봇에 힘을 가하는 경우 인간로봇 상호착용 토크를 추정하여 제어에 반영됨을 확인하였다.(Fig.2)

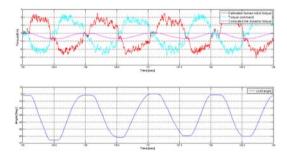


Fig. 2 Estimation of human-robot interaction torque

4. 결론

본 논문에서는 인간-로봇 상호작용력을 이용한 하지 착용형 로봇의 관절 제어방법에 대해서 설명하였으며 실험을 통하여 인체동작 추종기능을 구현하였다. 향후 본 알고리즘을 이용하여 하지 착용형 로봇의 전체 시스템에 적용하여 효용성을 입증할 예정이다.

후기

본 연구는 지식경제부 및 산업기술 평가관리원의 지식경제 기술혁신 로봇산업원천 기술개발 사업(No.10035461, 산업노동지원을 위한 착용식 근력증강 로봇 기술 개발) 지원을 받아 수행된 연구임.

참고문헌

 이병규, 이희돈, 한정수, 한창수, "상지 외골격 로봇의 제어기법 개발", 대한정밀공학회 2011 년도 추계학술대회, pp.41-42, 2011.