잉크젯팅을 이용한 콜라겐 마이크로스피어 제작

Fabrication of collagen microsphere using inkjetting

*최진호¹, #김규만¹, 박철우¹, 김영호², 유르겐 부르거³, 로익 자코 데콩브³

*J. H. Choi¹, *G. M. Kim (gyuman.kim@knu.ac.kr)¹, C. W. Park¹, Y. H. Kim², J. Brugger³, L. Jacot-Descombes³

¹경북대학교 기계공학부, ²경북대학교 차세대에너지기술연구소, ³École polytechnique fédérale de Lausanne(EPFL) LMIS1

Key words: Inkjetting, Collagen, Microsphere

1. 서론

마이크로 엔지니어링 기술의 하나인 잉크젯 프린팅 기술은 기존의 스크린 프린팅 (screen printing), 포토리소그라피 (photolithography) 등의 기법보다 공정이 간단하고 빠른 장점을 가진다. 이러한잉크젯 프린팅 기술은 저렴하고 재료의 소모가작으며, 비접촉방식으로 오염을 최소할 수 있다.최근에는 잉크젯 프린팅 기술을 바이오 분야에응용하고 있으며, 세포나 미생물을 마이크로 패턴형상으로 배열(array)하는 방법으로 많이 사용되고있다.[1-2]

잉크젯 프린팅 기술은 노즐의 구동방식에 따라 continuous 방식과 drop-on-demand 방식으로 나눠 진다. continuous 방식은 액체분사를 형성하기위해서 잉크가 펌프에 의해 노즐까지 이송 되어지는 방식이며, drop-on-demand 방식은 용기(reservoir)에 있는 유체가 모세관 힘(capillary force)에 의해노즐로 이송되는 방식이다. 또한, drop-on-demand 방식은 열적(thermal)구동과 피에조(piezo electric) 구동으로 나눌 수 있다. 열적 구동은 노즐 안에열을 가하면 기포가 발생하여 노즐 밖으로 액적을 분사시키는 방법이며, 피에조 구동방식은 압전소자에 전기를 가하면 압력으로 변환되어 모세관의체적을 변화시켜 노즐 출구에서 유체를 분사시키는 방법이다.[3-4]

본 연구에서는 drop-on-demand 방식의 피에조 구동형 잉크젯 노즐을 이용하여 콜라겐 마이크로 스피어[5]를 제작하였다. 또한, HepG2 세포를 담지 한 콜라겐 마이크로스피어를 겔화시켜 cell-laden 을 만들었다.

2. 콜라겐 마이크로스피어 제작

피에조 구동방식으로 작동되는 잉크젯 프린팅 장치를 Fig. 1과 같이 셋업 하였다. 셋업 된 잉크젯 프린팅 장치의 용기에 콜라겐을 채우고 미네랄오 일을 이용하여 콜라겐 드랍을 패터닝 하였다. Fig. 2 (a)는 오일이 올라간 글라스 표면 위에 콜라겐이패터닝 된 모습을 보여주고 있다. 실험 과정에서 콜라겐에 함유 된 물의 증발로 인하여 패턴 크기가줄어드는 현상을 확인 할 수 있었다. Fig. 2 (b)는 미네랄 오일이 담겨있는 샬레 위로 콜라겐 드랍을 분사하여 구형상의 콜라겐 마이크로스피어를 형성한 이미지이다. 실험에 사용 된 피에조 구동형 잉크젯 노즐의 크기는 50um이다.

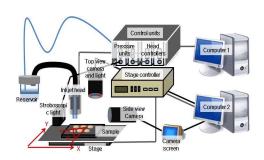


Fig. 1 Schematic view of inkjet printing setup.

3. HepG2 세포가 담지 된 콜라겐 마이크로스피어

HepG2 세포가 담지 된 콜라겐 마이크로스피어의 제작은 잉크젯 프린팅 장치의 용기에 콜라겐과 HepG2 세포 그리고 배양액(culture medium)을 함께넣어 마이크로스피어를 제작한다. 제작 된 마이크로스피어는 미네랄오일이 담겨있는 샬레로 분사

되고 콜라겐을 겔화시켜 HepG2 세포가 담지 된 콜라겐 마이크로스피어를 만든다. Fig. 3은 잉크젯 프린팅 장치를 이용하여 제작 된 HepG2 세포가 담지 된 콜라겐 마이크로스피어를 밑에서부터 위까지 현미경의 초점거리를 이용하여 측정한 이미지이며, 마이크로스피어의 크기는 100um, 두께는 80um이다. Fig. 4는 HepG2 세포가 담지 된 콜라겐마이크로스피어를 겔화 시킨 후 측정한 이미지이다. 잉크젯 프린팅 장치를 이용하여 제작 된 콜라겐마이크로스피어의 크기는 랜덤 하였으며, 콜라겐마이크로스피어 안의 HepG2 세포의 수도 랜덤하게 들어가 있음을 확인 할 수 있다.

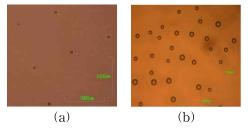


Fig. 2 Collagen droplet image. (a) Collagen patterning on glass. (b) Collagen droplet on mineral oil.

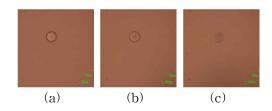


Fig. 3 HepG2 cell-laden image. (a) Bottom image. (b) Middle image. (c) Top image.

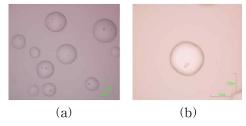


Fig. 4 HepG2 cell-laden after gelation image.

4. 결론

본 연구에서는 drop-on-demand 방식의 피에조 구동형 노즐을 이용하는 잉크젯 프린팅 장치로 콜라겐을 마이크로 패턴형상으로 배열 하였다. 또한, 콜라겐을 미네랄 오일이 담겨있는 샬레 안에서 구 형상을 가지는 마이크로스피어를 제작하였으며, 마이크로스피어를 응용하여 HepG2 cell-laden을 제작하였다.

잉크젯 프린팅 기법을 이용한 콜라겐 마이크로 스피어 제작은 쉽고 간편한 방법이지만, 사이즈 컨트롤이 어려우며 담지 된 세포의 수를 컨트롤 할 수 없다는 단점을 가진다. 또한, 콜라겐 마이크로 스피어는 콜라겐에 함유 된 물의 증발로 인하여 마이크로스피어의 크기가 작아짐을 실험을 통하 여 확인 하였다.

후기

본 연구는 2011 년도 교육과학기술부의 재원으로 한국과학재단의 지원(No. 2011-0001765, 2011-0016779)과 대학중점연구소지원사업 (2012-0005856)을 받아 수행되었습니다. HepG2 세포를 지원해준 Dr. A. Bertsch, Dr. B. Eker, R. Msissner와 Prof. P. Renaud (EPFL)께 감사드리며, Nano-Tera.ch, Project "SELFSYS", ETH 의 지원에 감사드립니다.

참고문헌

- 1. 윤성희, 이슬기, 조명옥, 김중경, "잉크졧 프린터 를 이용한 박테리아의 이차원 패터닝," 대한기 계학회논문집 B권, 34, 89-94, 2010.
- Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J., Boland, T., "Inkjet printing for high-throughput cell patterning," Biomaterials, 25, 3707-3715, 2004.
- 3. 신평호, 성재용, 이석종, "피에조 구동형 잉크젯 노즐에서의 미세 액적 형성 특성," 한국공작기 계학회, 춘계학술대회 논문집, 149-154, 2008.
- 4. 권계시, 명재환, "잉크젯 파형과 잉크 액적 체적의 관계 실험적 분석," 한국 정밀공학회지, 26, 141-145, 2009.
- Morimoto, Y., Tsuda1, Y., and Takeuchi, S., "RECONSTRUCTION OF 3D HIERARCHIC MICRO-TISSUES USING MONODISPERSE COLLAGEN MICROBEADS," Proc. of IEEE 2009, 56-59.