CCD 카메라를 이용한 인장시험편의 변형량 측정

Deformation Measurement of Tensile Specimen Using CCD Camara *이용찬¹, 장호섭³, 김동율¹, 강찬근¹, #김경석²

*Y. C. Lee¹, H. S. Chang³, D. L. Kim¹, C. G. Kang¹, [#]K. S. Kim(gsckim@chosun.ac.kr)²
¹조선대학교 첨단부품소재공학과 대학원, ²조선대학교 기계설계공학과,
³조선대학교 레이저응용 신기술개발 연구센터

Key words: Deformation Measurement, Tensile Specimen, CCD Camera

1. 서론

최근 산업전반에 활용되고 있는 대표적인 비접촉식 비파괴 검사기법으로서 실시간 전면(Full-field) 측정이 가능한 광학 CCD 카메라를 통한 연구가 많이 수행되고 있다.[1]

특히 광학 CCD 카메라의 선정에 있어서 칼라 CCD 카메라를 사용할 경우 해상도와 감도의 저하에 따른 노이즈가 발생하지만 흑백 CCD카메라로 촬영하면 보다 선명하게 변형을 측정할 수 있다.[2] 따라서 대상물의 변형량을 측정하기 위해서 재료시험 중하나인 인장시험을 수행하여 재료의 변형측정검사를 통해서 산업설비에 사용되는 스테인리스강의 STS 304 재질의 표준 시험편 강도 및 강성을 알 수 있는 역학적 시험방법을 많이 사용된다.

본 논문에서는 광학 CCD 카메라를 이용하여 인장 시험편의 각 부위별 변형값을 측정하기 위해서 인장 속도 별로 시험편의 변형 측정검사를 시행했다.

2. 실험방법

인장시험편의 각 부위별 변형 측정을 하기 위해서 인장시험기 혹은 만능시험기인 UTM 장비를 사용하 였으며 일본 Shimadzu 사의 (AG-IS Trapezium) 제품 을 사용하였다. 인장을 가 할 때 광학용 측정장비인 CCD카메라로 기록하기 위해서 산업용 카메라(IMI tech)를 이용하였다. 인장 시험을 통해서 시험편의 변형측정을 부위별로 측정하기 위해서 National Instrument사의 상용프로그램(LabView 8.5버전)을 사 용했다. CCD로 기록된 이미지를 각 픽셀 값으로 측정 하여 실제 길이로 환산하였으며 각 부위별 측정 영역 은 총 3 개로 Grip 부, Round 부, 표점거리 부 등으로 나눌 수 있다. 시험편은 ASTM(미국시험재료협회)에 서 준하는 STS 304 재질의 두께 3mm의 평판을 와이어 컷팅 가공으로 제작한 시험편이며 시험편의 형상 및 크기는 Fig. 1과 같으며 시험 장치의 구성은 Fig. 2와 같다.

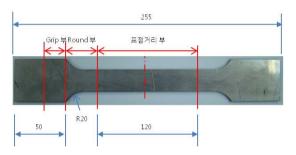


Fig. 1 Shape of Tensile Specimen

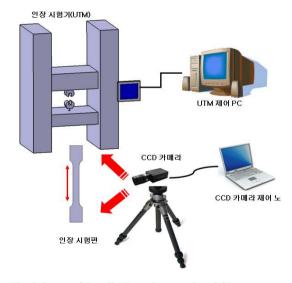


Fig. 2 Setup of Tensile Experiment using CCD camera

3. 실험결과

본 실험에서는 인장 시험편의 파단 직후의 각 부위 별로 Grip 부, Round 부, 표점거리 부의 변위값을 환산하여 더한 값이 인장시험기의 크로스헤드의 전체 변위값과 동일하다는 것을 해석하기 위해서 실험을 행하였다. 이를 위해서 광학용 CCD 카메라를 이용하여 10초에 한 장씩 기록된 이미지를 얻어서 각부위별 픽셀 값으로 환산한 계산 데이터를 더한 변위값과 UTM 인장시험기에서 얻은 크로스헤드 전체위

치의 변위값을 비교하여 얼마나 일치한 지 혹은 어느 정도의 오차율이 발생되는지 다음과 같이 아래 Fig. 3, Fig. 4, Fig. 5의 변위-시간 그래프로 나타내었으며 Table 1은 시간에 따른 각 인장속도별로 부위별로 더한 변위값을 표기하였다.

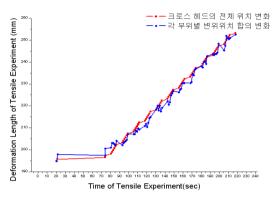


Fig. 3 Displacement-Time Slope according to Tensile Velocity 3 mm/min

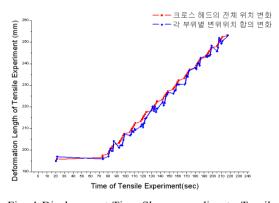


Fig. 4 Displacement-Time Slope according to Tensile Velocity 5 mm/min

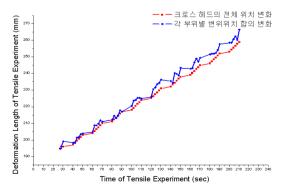


Fig. 5 Displacement-Time Slope according to Tensile Velocity 7 mm/min

Table 1 Comparison of Total displacement data sum in each area according to Tensile Velocity

Velocity Time	3mm/min	5mm/min	7mm/min
10	198.0718	197.0508	196.3438
20	196.5364	196.0381	199.4029
30	197.5577	196.0297	198.5648
40	198.5961	197.0511	198.5387
50	200.6469	199.6169	201.5978
60	201.1706	200.655	202.0037
70	201.686	199.6259	203.7708
80	199.6355	199.6346	204.181
90	203.2313	204.2598	205.0409
100	200.6823	201.196	209.0159

4. 결론

본 논문에서는 광학 CCD 카메라를 이용하여 인장 시험에 따른 시험편의 변형측정을 하기 위해서 인장 시험기 크로스헤드의 전체위치 변위값과 각 부위별 로 더한 변위위치의 변위값을 비교 실험하여 인장시 험편의 변형측정값을 최소한의 평균오차율로 정확 한 데이터를 도출하는데 사용될 것으로 사료된다.

1) 인장 속도별로 10초에 한 번씩에 인장시험편의 각 부위별 더한 위치 변위값과 크로스헤드의 전체위 치 변위값을 비교해 본 결과 3 mm/min, 5 mm/min, 7mm/min 등의 평균오차율은 각각 2.768, 2.110, 3.510 등으로 최소의 오차율을 나타낸 5 mm/min일 때 크로 스헤드의 전체위치의 변위값과 각 부위별로 더한 위치 변위값이 가장 일치된 최적의 데이터로 분석되 었다.

2) CCD 카메라로 기록된 이미지의 픽셀 값으로 환산된 각 부위별로 더한 데이터 값이 실제 데이터 값과 거의 동일한 형태의 그래프로 나타내어 측정데 이터의 신뢰성과 정확성을 높이 살 것으로 사료된다.

후기

본 연구는 2012년도 정부(교육과학기술부)의 재원으로 한국연구재단의 기초연구사업 지원을 받아 수행된 것임(2010-0010687)

참고문헌

- K.S.Kim, J.G.Choi, S.K.Back, H.S.Chang and J.S.Choi "Quantitative Measurement of out-of-plane Displacement using shearography," Autumn Proc. of KSNT, pp.167-172, 1994
- R. Jones, C. Wykes "Holographic and Speckle Interferometry," Cambridge University Press, Cambridge, Massachusetts, pp.165-196, 1989