높은 온도와 냉각 시 박판성형의 응력변형 선도와 스프링 백 예측을 위한 수정된 Johnson-Cook 모델

Modified Johnson-Cook Model for Sheet Metal Forming at Elevated Temperatures and Its Application for cooled stress-strain curve and spring-back prediction

*정동원¹,김봉천¹,김동홍¹

*D. W. Jung¹, B. C. Kim¹, K.D.Lee¹ ¹제주대학교 기계공학과

Key words : Johnson-Cook model, boron steel, magnesium alloy sheet, FEM, tensile test, spring-back

1. 서론

최근에 난성형 재료의 사용이 늘고 있으며 스프 링백을 줄이기 위한 재료의 고온 유동에 연구가 열처리 공정 조건을 설계하는데 필수적이다.[1][2] 시뮬레이션 결과의 정확성은 재료의 변형 거동 을 나타내는 구성 방정식에 따라 달라집니다.[3] Johnson-Cook모델은 유한요소 프로그램의 한 모듈 로 온도와 변형율이 다른 다양한 재료에 사용되었 다.[4] 본 연구에서 수정된 J-C 모델로 높은 온도에 서 더 정확하게 응력-변형 곡선 예측할 수 있는 J-C 재료 변수를 결정하는 새로운 방법을 제시했다.

2. Johnson-Cook model

J-C 모델은 일반적으로 단열 과 동적 해석에 사용하고, 순전히 경험적이며, 유동 응력에 대한 다음과 같이 나타낸다.

$$\overline{\sigma} = (A + B(\varepsilon_{eq}^{pl})^n) \left(1 + C \log\left(\frac{\dot{\varepsilon}_{eq}^{pl}}{\dot{\varepsilon}_0}\right) \right) (1 - \hat{T}^m)$$

$$(1)$$

$$(2)$$

$$(1)$$

$$(1)$$

$$\bar{T} = \begin{cases} 0 & \text{for } T < T_r \\ \frac{T - T_r}{T_m - T_r} & \text{for } T_r \le T \le T_m \\ 1 & \text{for } T > T_m \end{cases}$$
(2)

A, B, C, n 그리고 m은 재료 변수이고 T는 현재 온도이고 Tm은 녹는점이며 Tr은 기준온도인 24도 이다. 박관재료의 소성거동이 일정한 변형 속도와 높은 온도에서 확인된 경우 식(1)은 다음과 같이 나타낼 수 있다.

$$\overline{\sigma} = (A + B(\varepsilon_{eq}^{pl})^n) \left(1 - \left(\frac{T - T_r}{T_m - T_r} \right)^m \right)$$
(3)

경화 기간의 변수 A, B, n는 다양한 경화 법을 따르도록 응력 - 변형 곡선을 피팅할 수 있다. 변수 m을 결정하기위해서는 높은 온도와 실내 온도 둘 다의 준정적 시험결과가 필요하다. 만약 준정적 실험이 다른 온도에서 같은 변화율을 보였 을 때 식(1)과 식(2)에 의해 응력과 소성변화를 비율 r로 나타낼 수 있다.

$$r = \frac{\overline{\sigma}^{(1)}(\varepsilon_{eq}^{pl})}{\overline{\sigma}^{(2)}(\varepsilon_{eq}^{pl})} = \frac{1 - (\hat{T}^{(1)})^{m}}{1 - (\hat{T}^{(2)})^{m}}$$
(4)

만약 $T^{(2)} = T_r$ 이면 식(2)로부터 $\hat{T}^{(2)} = 0$ 이고 m은 $\log(1 - r)$

$$m = \frac{1}{\log(\hat{T}^{(1)})} \tag{5}$$

높은 온도에서 응력은 식(4)에 따라 실온에서의 응력으로 구분할 수 있다.

그 결과는 소성변화 ℓⁿ에 범위의 평균값이다. 높은 온도에 r값을 계산한 후 식(5)에서 얻은 값은 m의 평균값이다. 이 연구에서 위의 J-C모델을 Ludwick 경화법을 기반을 조금 수정하고자 한다.

식(3)에 열관련 매개변수 Qn 과 qn(n=1,2,3)을 추 가하여 식(7)로 나타내었다. Qn 과 qn을 결정하려면 열과 Ludwick 경화법(표1)의 변수 사이 관계의 기 반으로 MATLAB의 최소제곱으로 피팅하여 사용 한다.

$$\overline{\sigma} = \sigma_{\gamma} \left(1 - \mathcal{Q}_{i} \left(\frac{T - T_{r}}{T_{m} - T_{r}} \right)^{q^{2}} \right) + F \left(1 - \mathcal{Q}_{2} \left(\frac{T - T_{r}}{T_{m} - T_{r}} \right)^{q^{2}} \right) \left(\mathcal{E}_{eq}^{p^{i}} \right)^{n \left(1 - \mathcal{Q}_{i} \left(\frac{T - T_{r}}{T_{m} - T_{r}} \right)^{q^{2}} \right)}$$
(7)

피팅 후 결정 변수 Qn 과 qn은 표3에 나열되어 피팅 곡선은 그림1에 표현하였다.

Fig 1. Fitting curves based on the relationship of material parameters and temperatures of boron steel (a) and magnesium alloy (b)

Table 1	Hardening parameters at elevated temperatures
	determined by fitting curves

determined by mung curves							
	Boron-st			-	Magnes	sium allo	by sheet
Temp	σY	F	n	Temp	σΥ	F	n
24°C	461.83	969.48	0.68	24℃	210	382.49	0.61
500℃	370.13	277.05	0.54	100°C	205	224.03	0.49
700℃	134.84	43.34	0.39	200°C	124	97.25	0.44

Table 2 Parameters obtained by fitting curves

Boron steel sheet							
Q1	q1	Q2	q2	Q3	q3		
12.301	3.624	1.835	0.892	2.185	2.076		
Magnesium alloy sheet							
Q1	q1	Q2	q2	Q3	q3		
9.787	2.491	1.850	0.735	0.502	0.486		

3. 냉각조건에 붕소강의 단축인장시뮬레이션

위에서 구성한 모델로 공기냉각에서 붕소강 박 판 인장 표본의 단축 인장 시험을 ABAQUS VUMAT 서브루틴을 통해 시뮬레이션 하였다. 그 림2는 공기냉각과정에 인장 시험의 실험사진이다. 여기서 인장 표본은 700℃로 가열한 공기중에 노출 하여 인장 시험이 진행되었다. 그림3은 테스트 후 에 인장시편의 온도 감소와 응력-변형 곡선이다.

Fig 2. Experimental setup for tensile test with air cooling process

Fig 3. FEM simulation result (a) and compare with experimental of air cooling curve (b) and stress-strain curve in air cooling from 700oC (c)

담금질 과정의 응력 변형 곡선 예측을 위한 시뮬 레이션하기위해 공기 냉각후의 인장실험의 파단 시까지의 온도감소를 고려 표4의 열특성을 사용하 였다.

Table 3 Thermo-physical properties of Boron steel as function of temperature T (in oC)andair

runetion of temperature 1 (in oc)andan					
Thermo-physical property	22MnB5	Air			
Thermal conductivity (W/(m K))	30.9 - 0.008 T	0.055			
Specific heat capacity (J/(kg K))	439 + 0.21T	1087			
Thermal coefficient expansion (K-1)	1.3e-05	1.32e-3			

4. 높은 온도에서 박판 마그네슘 V-bending

그림4(a)는 마그네슘 박판의 인장/압축 및 압축/

인장 실험의 시뮬레이션을 보여준다. 그림4(b)는 제안된 모델의 시뮬레이션으로부터 계산된 결과 와 실험에서 측정된 인장/압축, 압축/인장 데이터 를 비교했다. 그림5는 마그네슘 박판의 V-벤딩을 제안된 모델을 적용한 시뮬레이션 예측값과 실험 값을 비교하였다.

Fig. 4 The comparisons between stress-strain curves of the experiment and FE simulation results with various hardening laws (a) and modified hardening law (b)

Fig. 5 Definition of spring-back angle (a), deformed blank shapes after spring-back at elevated temperatures of experiment (b) and simulation (c)

5. 결론

본 연구에서는 고온 및 생각 온도에서 V-벤딩 스프링백을 예측하고 인장실험의 응력-변형곡선 을 예측하고 시뮬레이션하기위해 수정된 J-C모델 을 ABAQUS/Explicit에서 사용자 정의(VUMAT)를 사용하여 구현하였다. 시뮬레이션 결과 제안된 J-C 모델은 응력-변형 곡선을 실제실험결과와 동일하 게 예측한 것으로 나타났다.

참고문헌

- S.M. Abbasi, A. Shokuhfar, Prediction of hot deformation behaviour of 10Cr-10Ni-5Mo-2Cu steel, Mater. Lett. 61 (2007) 2523-2526.
- Y.C. Lin, M.S. Chen, Jue Zhong, Microstructural evolution in 42CrMo steel during compression at elevated temperatures, Mater. Lett. 62 (2008) 2136– 2139.
- Y.C. Lin, Ge Liu, A new mathematical model for predicting flow stress of typical high-strength alloy steel at elevated high temperature, Comput. Mater. Sci. 48(1) (2009) 54-58.
- G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, In: Proc 7th Int. Symp. Ballistics (1983) 541–547.