
- 797 -

Resolving Security Issues of

Cognitive Radio Networks

Sangook Moon

Mokwon University, Department of Electronic Engineering

E-mail : smoon@mokwon.ac.kr

ABSTRACT

The cognitive radio (CR) network has been studied in the form of open source by vast

number of communities, and the potential expectation is very high since the CR is based on

reprogrammable platform. However, as the peer-to-peer software has been abused, so high is the

chance that the CR network can be abused public wide. Consequently, the benefit from the

study of next-generation wireless network can be at risk because law breakers could abuse the

CR. In this contribution, we analyze the issues and the problems of the CR and discuss an

efficient measure against security attacks.

Keywords

Cognitive radio, security, next-generation wireless network.

Ⅰ. Introduction

With the advent of ubiquitous era, the

number of wireless communications devices has

been growing exponentially, thus poverty of

resource of physical frequency arose as a

serious problem. Accordingly, to avoid the

traditional way of allotting wireless channels in

fixed regions, cognitive radio has been

introduced in which finding empty channels is

possible by itself and communicate within its

channels respectively [1].

In order to satisfy the needs of the users of

increasing wireless communication, it is

essential to secure enough frequency

bandwidth. However, wireless frequency

bandwidth for communication is finite, and

most of it is occupied by primary users, which

makes it difficult to assure additional frequency

band. In fact, research by FCC and other

institutes indicates that the efficiency of usage

of preoccupied frequencies turned out as low

as 30%, especially in suburbs and regions with

low population density [2][3].

CR technology is created based on the

software defined radio to utilize the ability of

spectrum sensing to recognize available

frequencies and choose to communicate, with

special ability to update environmental

parameters by itself continuously. To realize the

CR in effect, studies on efficient channel

sensing and channel hopping have been in

progress. In this paper, I discuss a few issues

on securities and suggest ways to resolve the

problems in software aspect.

Ⅱ. CR Verification and Security
Measurement in Software Manner

The verification method of embedded

software in CR is different from that of

traditional software in which testing is done

throughout the whole system. Instead of

inspecting every possibility of program code,

the point is whether the CR can be guaranteed

to comply with the regulation policy of the

network. Compared to the traditional method

which relies on debugging, CR can be verified

as long as every CR device does not violate

the policy generated by regulation entity. This

way we are able to get rid of the potential

malicious code, which could not have been

removed in the traditional way. For the sake of

this way of verification, I suggest two concepts

in view of software.

A. Abstracion of a Program Based on New

한국정보통신학회 2012 추계종합학술대회

- 798 -

Fig. 4. An Example Code with

Variables Exposed to Attack

Swarm-Intelligence

First, I suggest an abstraction of a program

based on new swarm intelligence. That is,

applying the Ant Colony Optimization (ACO)

[4] to the abstraction technique, to enable

discriminating of the part of a program code,

which is expected to be examined first. ACO is

an algorithm of recognition which finds the

optimal answer through the collaboration and

adaptation form of virtual ants, which emulate

real ants’ habit. Apart from its original purpose

of creating the test data, in this paper, I

modify and expand the ACO to simplify the

process of path level abstraction for software

verification. The basic concept is as follows.

Given the characteristics of design under test,

virtual ants follow the program flow. During

the movement, the state space which is

transferred by violating the order can be found.

The trace followed by the virtual ants can be

used as the initial program

under-approximation. Experiments with

thousands of program codes revealed that

considerable amount of the code could be

removed.

B. Code Level Metric for Evaluating the

Weakness of Variables in a Program

Again apart from the traditional security

measurement metric which focuses on the

system level, I suggest a preemptive,

cost-effective method in order to discriminate

weak codes as soon as possible in the program

design level. Focusing on the code level rather

than the system level could reduce effort for

finding and fixing the error which threatens

security. By this concept we can remove weak

points of code before the software takes its

place to put the security level high and make

malicious attack difficult.

Weak program variables are the key target of

security attacks. Let’s look at the code in Fig.

1. Scalar variables range, count and array

variables deststr, nums are all the potential

target of attack.

There are two scenarios in general form of

attack. In the first case, such variable as deststr

itself is the target of attack. In the line number

of la, because strcpy function does not

automatically take care of the boundary of

arrays, variable deststr becomes overflow if the

input buffer length of inputstr exceeds the size

of assigned target buffer of deststr. In the

second scenario, variables can be indirectly

affected by attacks targeted to other variables

such as range or count. According to the

general structure of local variable stack, values

of two scalar variables can be indirectly

overwritten by overflow of neighboring array

variables of deststr. However, not in all cases

does changing the values of variables raise the

security problems of a program. Rather,

comparing with variable count, range is more

important in the respect of security, because

without the verification of effectiveness, the

value of inappropriate variable range in line lb

causes overflow of array variable nums. In the

other way, if we change the value of count

with malicious intention, the effect of which is

trivial compared with what range affects.

We can learn from the example above that

we can practically use the numbering the

priority of risk degree of security in variable

level in finding weak points in the program

code. Another thing that we can learn is that

we should secure precise modeling of program

structure against the effect of malicious security

attack as well as extensive analysis. Therefore,

traditional simulation based attacking model

achieved from the analysis of partial program

behavior is not efficient for code level security

verification. So I, in this paper, in order to

derive the security sensitiveness in variable

level, consider the frequency which is enough

for passing the security property test and the

security weight with regard to that. Suppose

there are N security property variable spi (i is

integer where 1 <= i <= N). Each spi is

supposedly related to security weight swi.

Suppose verification candidate variable v@l

Resolving Security Issues of Cognitive Radio Networks

- 799 -

(variable v in line l) is given, and assume this

falls into either safe subset (security property

sps1, 1 <= i <= Ns) or vulnerable subset

(security property spv1, 1 <= i <= Nv) after

the first stage of the algorithm, where 1 <= Ns,

Nv <= N, and Ns + Nv = N. Now, the

security vulnerability of variable v in line l can

be calculated as (1).

∶ ∶
 ≤ ≤
 ∶…
 ⊂∶… (1)

As we can see in (1), vulnerability of a

variable is determined by combinational

security damage that affects the whole system

security when the variable is attacked. We can

make (1) a formula to verify as an element of

program model checking. The more violating

property a variable has, the more threatening

effect it will potentially have.

Future work will include implementing a

verification engine. We can now use model

checking as the formal verification platform to

check the vulnerabilities of the security in the

program code.

Ⅲ. Conlcusion

CR technology is expected to be applied as

any form in wireless communications sooner or

later. The XG project under progress by U.S.

Pentagon relates CR networks to military

equipment. War can occur anywhere around

the world, and the military equipment with

fixed frequencies is useless. If CR is available

to the military equipment, the military

operations can be successful making use of the

empty slots of frequencies by CR technology.

Besides, in the case of public disaster

prevention communication, many frequency

slots are necessary when disaster occurred, but

minimum of them are required in usual case.

Therefore, with CR technology, public safety

bands can be occupied by normal users in

ordinary times, but when emergency, CR

devices with normal users detects the disaster

and release the frequencies to the primary

users so that frequency utilization goes high. In

this way, CR technology is essential to future

wireless network and is apt to weak to

malicious attacks because of its cognitive

characteristics. In this paper, I suggested two

methods of resolving the security attacks in

view of software. I expect both methods can be

cornerstones to protect the smart cognitive

radio networks. Future work will include

implementing a verification engine. We can

now use the proposed ways of model checking

as the formal verification platform to check the

vulnerabilities of the security in the program

code.

Reference

[1] S. Haykin, "Cognitive Radio:
Brain-empowered wireless
communications," IEEE J. Sel. Areas
Commun., vol. 23, no. 2, pp. 201-220,
Feb. 2005.

[2] C Kim, “Cognitive Radio technology
trends,” Weekly technology trends of
Korea, Vol. 21, No. 4, August, 2006

[3] http://www.ofcom.org.uk/research/technolog
y/research/emer_tech/cograd/

[4] http://iridia.ulb.ac.be/mdorigo/ACO/ACO.ht
ml

