EVs용 통합형 배터리 충전기의 토폴로지별 특성 비교

오창열, 김윤성, 성원용, 이병국 성균관대학교 정보통신대학

Comparison of Integrated Battery Charger Topologies for EVs

Chang Yeol Oh, Yun Sung Kim, Won Yong Sung, and Byoung Kuk Lee College of Information & Communication Engineering, Sungkyunkwan University

ABSTRACT

본 논문에서는 전기자동차 (Electric Vehicles, EVs) 및 플러 그인 하이브리드 자동차 (Plug in Hybrid Electric Vehicles, PHEVs)용 통합형 배터리 충전기의 토폴로지 구성에 따른 동 작 및 성능 특성을 비교한다. 기존에 제안된 통합형 배터리 충 전기를 토대로 개별 모듈에 적용 가능한 토폴로지를 검토한다. 또한, 검토한 모듈의 통합을 위한 양방향 구현 시 동작 및 성 능을 비교한다. 이를 통해 선정된 토폴로지들이 가질 수 있는 조합들을 구성하고, 상호간의 영향을 분석한다. 분석한 결과를 기반으로 각각의 조합의 성능 및 특성의 시뮬레이션을 통한 비 교추이를 제시한다.

1. 서 론

최근 다양한 친환경 차량의 상용화가 가속화되면서, EVs 및 PHEVs에 사용되는 탑재형 충전기 (On Board Charger, OBC) 와 저전압 DC DC 컨버터 (Low voltage DC DC Converter, LDC)에 관한 연구 및 개발이 활발히 이루어지고 있다. 이러한 연구들이 확산되는 가운데, 차량에 내장되는 OBC와 LDC의 소형, 경량화에 초점을 맞추어 다른 전력변환 장치와의 통합화 에 관한 연구가 주목받고 있다.^{11 외}

이러한 다양한 연구 중 구동용 인버터+OBC 통합 시스템은 구동용 모터의 인덕턴스를 사용하는 과정에서 구동 시스템 수 명 및 충전의 안정성 부분에서 적용하게에 검증되어야 하는 요 소들이 남아있다. 반면 OBC+LDC 통합 시스템은 구동 시 기존 시스템에서 변화를 최소화 할 수 있기 때문에 다양하게 시도되 고 있다. 특히 OBC 출력회로와 LDC 입력회로를 공유하여 양 방향 구동을 하는 시스템은 회로 및 기구 단일화가 가능하지 만, 양방향 구동으로 인한 시스템 구성에 제한사항이 따른다.^[1]

그러므로 본 논문에서는 OBC 출력과 LDC의 입력을 공유하 는 시스템에서 고효율 달성 및 고 전력밀도 달성을 위해 조합 가능한 토폴로지들을 검토한다. 또한 개별구동과 통합 양방향 구동에 영향을 미치는 요소를 분석하고 조합에 따른 성능 및 특성을 시뮬레이션을 통해 비교한다.

2. OBC+LDC 통합형 시스템

2.1 시스템 구성^[1]

그림 1은 OBC+LDC 통합형 시스템의 기본 회로 구성을 나

그림 1 OBC+LDC 통합형 시스템의 회로구성 Fig. 1 OBC+LDC Integrated System Circuit Configuration

타내고 있다. OBC는 계통을 전원으로 Boost PFC회로와 DC DC 컨버터를 통해 고전압 배터리와 연결된다. LDC는 고 전압 배터리를 전원으로 DC DC 컨버터를 통해 12V 배터리 및 전장부하에 전력을 공급한다. 이러한 시스템은 그 기능에 따란 크게 4가지 요소로 구분되고, 이 중 Part 3과 변압기의 코어를 공유하여 OBC+LDC 통합형 시스템을 구성한다.

2.2 토폴로지 비교

차량에서 요구되는 고효율 및 고 전력밀도 달성을 위해서 그림 2의 (a) (c)와 같이 공진 및 준공진 토폴로지들을 (d)와 같은 변압기 구조를 통해 Part 4의 정류기로 구성된다.^{[1], [3]}

이러한 공진 및 준공진 토폴로지들을 양방향 통합 구성에 적용시킬 때, 변압기 2차 측에 구성된 모듈의 공진 영향은 피 할 수 없는 문제로 작용하게 된다.^[3]

그림 3 구성 가능한 공진 네트워크의 조합 Fig. 3 Available Combinations of Resonant Network

그림 3은 제시한 토폴로지들의 공진 네트워크에 초점을 맞 추어 변압기 N1 및 N2 측에 구성 가능한 조합을 나타낸 것이 다. 이러한 조합들은 Part 3의 양방향 동작 시 영향을 부하 임 피던스의 1차 측 환산을 나타내는 식 1을 통해 턴 비와 임피던 스로 표현할 수 있다.^[3 4]

$$(R'+jX') = (a^2R+ja^2X)\frac{I_2}{a} = a(R+jX)I_2 = aV_2$$
(1)

단, R'과 X'은 변압기 1차 측으로 환산된 임피던스, a는 턴 비 그리고 I₂와 V₂는 각각 2차 측의 전류와 전압을 나타낸다.

식 1과 같이 양방향 동작 중 변압기 2차 측의 공진 네트워 크는 1차 측에 임피던스의 형태로 환산될 수 있으며, 이는 곧 공진 파라미터의 변화를 의미한다.

2.3 시뮬레이션 및 성능 검증

시뮬레이션을 통해 앞서 조합한 공진 토폴로지들의 동작 시 영향을 살펴본다. 수행한 시뮬레이션의 주요 파라미터는 표 1 에 제시된 바와 같다. 또한 주어진 파라미터를 토대로, 제시한 공진 네트워크의 조합에 따른 영향을 보이면 그림 4와 같다.

표 1 시스템 파라미터

Table 1 System Parameters

Parameter	Value	Parameter	Value
정격출력 (OBC)	3.3 [kW]	출력 전압 (OBC)	350 [V _{dc}]
정격출력 (LDC)	1.8 [kW]	출력 전압 (LDC)	12 [V _{dc}]
입력전압 (OBC)	380 [V _{dc}]	턴비 (N1:N2:N3&N4)	16:18:1

그림 4와 같이 동일한 입출력 및 부하조건에서 1, 2차측 토폴로지 변화로 인하여 SRC와 LLC는 스위칭 주파수의 변화 가 PSFB의 경우 2차 측 변화에 따른 듀티 변화가 확인 가능 하다. 이는 2차 측의 공진 네트워크가 1차 측 임피던스로 환산 되어 공진에 영향을 주는 것으로, 3가지 토폴로지 중 SRC가 상대적으로 2차 측의 영향을 적게 받는 것을 확인할 수 있다.

3. 결 론

본 논문에서는 EVs용 통합형 배터리 충전기의 토폴로지 구성에 따른 동작 및 성능 특성을 비교하였다. 통합형 충전기 에 사용 가능한 토폴로지들을 제시하고, 이들 토폴로지들의 공 진 네트워크가 미치는 영향을 분석하였다. 이를 토대로 구성한 조합들의 성능 및 영향을 시뮬레이션을 통해 검증함으로 적합 한 토폴로지를 선택 가능한 근거를 제시하였다. 이를 통해 다 양한 토폴로지를 기반으로 통합형 충전기의 설계에 토대를 제 공할 수 있으리라 기대한다.

- 김윤성, 오창열, 성원용, 이병국, "EVs/PHEVs용 Bidirectional LDC 일체형 Onboard Battery 충전시스템 제어알고리즘", 전력전자학회, 전력전자학술대회 논문집, pp.596 597, 2012.
- [2] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, "Grid Connected Integrated Battery Chargers in Vehicle Applications: Review and New Solution", IEEE Trans. Industrial Electronics, Vol.60, pp. 459 473, Feb, 2013.
- [3] Y. Du, S. Lukic, B. Jacobson, and A. Huang, "Review of High Power Isolated Bi directional DC DC Converters for PHEV/EV DC Charging Infrastructure," IEEE Energy Conversion Congress and Exposition (ECCE) 2011, pp 553 560, Sept. 2011.
- [4] R. W. Erickson, "Fundamentals of Power Electronics", 2nd Ed, KluwerAcademic, 2001.