[7IMS-01] Infrared Medium-Deep Survey: Overview

Myungshin Im¹, Soojong Pak², Won-Kee Park^{1,3}, Ji Hoon Kim¹, Jae-Woo Kim¹, Seong-Kook J. Lee¹, Marios Karouzos¹, Yiseul Jeon¹, Changsu Choi¹, Hyunsung Jun¹, Dohyeong Kim¹, Jueun Hong¹, Duho Kim¹, Minhee Hyun¹, Yongmin Yoon¹, Yoon Chan Taak¹, Yongjung Kim¹, Giseon Baek², Hyeonju Jeong², Juhee Lim², Eunbin Kim², Nahyun Choi², Hye-In Lee², K. M. Bae², & Seunghyuk Chang⁴ ¹CEOU/Astronomy Program, Dept. of Physics & Astronomy, Seoul National University, Seoul 151-742, KOREA, ²School of Space Research, Kyung Hee University, Suwon 446-741, KOREA, ³Korea Astronomy and Space Science Institute, Daejeon 305-348, KOREA, ⁴Samsung Electronics, Suwon, Gyeonggi-do 443-370, KOREA

Infrared Medium-Deep Survey is a near-infrared imaging survey geared toward understanding the formation and the evolution of quasars and galaxies at high redshift, and studying transient and time-variable objects such as gamma-ray bursts, supernovae, and young stellar objects. The survey uses a multi-tier structure, with deep imaging survey of 100 deg² using UKIRT to the depth of 23 AB mag, and a shallower imaging of interesting sources using the CQUEAN camera on the 2.1m telescope at McDonald observatory. This talk will give an overview of the survey strategy, the instrument development, and science highlights. The science highlights will include the discovery of high redshift quasars, high redshift galaxy clusters, GRBs, and other interesting sources. At the end of the talk, we will also present the future prospects of our study.

[7IMS-02] Camera for Quasars in Early Universe

Won-Kee Park^{1,3}, Soojong Pak², Myungshin Im³, Changsu Choi³, Yiseul Jeon³, Seunghyuk Chang⁴, Hyeonju Jeong², Juhee Lim², Eunbin Kim², Nahyun Choi², Hye-In Lee², Sanghyuk Kim², Byeongjoon Jeong², and Taegeun Ji²
¹Korea Astronomy and Space Science Institute, ²School of Space Research, Kyung Hee University, ³CEOU/Department of Physics and Astronomy, Seoul National University, ⁴Samsung Electronics

Camera for QUasars in EArly uNiverse (CQUEAN) is an optical CCD camera system made by Center for Exploration of the Origin of the Universe (CEOU). CQUEAN is developed for follow-up observation of red sources such as high-redshift quasar candidates $(z \ge 5)$, gamma-ray bursts (GRB), brown dwarfs and young stellar objects. The CQUEAN is composed of a science camera with deep-depletion CCD chip which is sensitive at around 1µm, a set of custom-made wide-band filters for detection of guasar candidates at $z\sim 5$, and a guide camera. A focal reducer was developed to secure 4.8'x4.8' field of view, and an in-house user software for efficient data acquisition. CQUEAN was attached to 2.1m Otto Struve Telescope in McDonald Observatory, USA, in August 2010. About 1000 quasar candidates including 3 confirmed with follow-up spectroscopy, have been observed so far, and many high-z galaxy cluster candidates, GRBs and supernovae were also observed. And monitoring of HBC 722, a young stellar object, is under way since 2011. Further enhancement of CQUEAN including the introduction of narrow-band filters is planned.

68 / Bull. Kor. Astron. Soc. Vol. 38 No. 2, Oct. 2013