Numerical Analysis for Hydrodynamic Interaction Effects between Vessel and Semi-Circle Bank Wall

이춘기*, 문성배*, 오진석**, 정연철*, 정태권*

*한국해양대학교 항해학부, *한국해양대학교 기관공학부

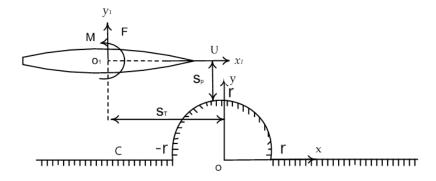
- មុំ : The hydrodynamic interaction forces and moments induced by the vicinity of bank on a passing vessel are known as bank effects. In this research, the characteristic features of interaction acting on a passing vessel in the proximity of a semi-circle bank wall are described and illustrated, and the effects of ship velocity, water depth and the lateral distance between ship and semi-circle bank wall are summarized and discussed.
- 핵심용어 : Hydrodynamic Force, Bank Effect, Spacing between Ship and Semi-Circle Bank Wall

배경 및 목적

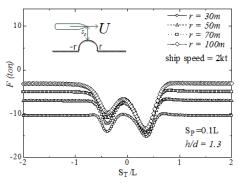
* When a large vessel maneuvers in restricted waters:

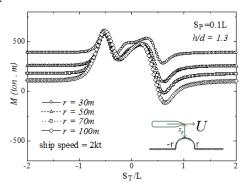
· Bank effect / Ship-Ship interaction effect in congested water areas due to the increasing size and number of large vessel?

• The Difference of maneuvering characteristics in deep and shallow water?


	Principle particulars		
L (m)		325	
B (m)		53	

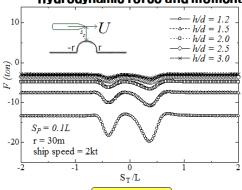
UZU
53
22.05
0.831

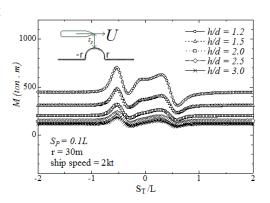

Main Parameters


- \triangleright Ship's velocity (U)
- ➤ Lateral distance (SP)
- \triangleright Longitudinal distance (ST)
- \triangleright Depth to draft ratio (H/d)
- ➤ Length of semi-circle (r)
- Shape of bank

Coordinate Systems

Hydrodynamic force and moment




Parameters

- \triangleright Ship's velocity (U = 2kt)
- \triangleright Lateral distance (SP = 0.1L)
- ➤ Length of semi-circle (r=30m~100m)
- \triangleright Depth to draft ratio (H/d = 1.3)

Non-dimensional Hydrodynamic Force & Moment
$$C_F = \frac{F}{\frac{1}{2}\rho L dU^2}$$
, $C_M = \frac{M}{\frac{1}{2}\rho L^2 dU^2}$

Hydrodynamic force and moment

Parameters

- > Ship's velocity (U = 2kt)
- \triangleright Lateral distance (SP = 0.1L)
- ➤ Length of semi-circle (r=30m)
- \triangleright Depth to draft ratio ($H/d = 1.2 \sim 3.0$)

Non-dimensional

Hydrodynamic Force & Moment $C_F = \frac{F}{\frac{1}{2}\rho L dU^2} \qquad C_M = \frac{M}{\frac{1}{2}\rho L^2 dU^2}$

Conclusions

- > In case of bank effect between ship and semi-circle bank wall,
 - · Significant changes arose at the leading part of radius of semi-circle bank wall
 - · As the radius increases the semi-circle bank wall generates the largest disturbance
- > When moving at low speed of 2kt near the semi-circle bank wall,
 - Bank effect sharply increases as the lateral distance decreases

(Sp is less than about 0.2L)

· Bank effect largely decreases as the lateral distance increases

(Sp is more than about 0.3L)