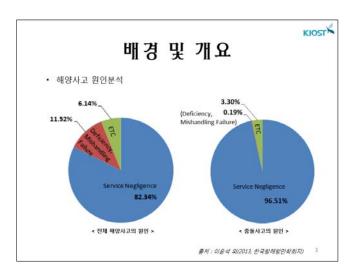
해양사고 예방을 위한 보급형 교육훈련 시뮬레이터 개발

† 김홍태, 이윤석*, 박세길**, 이영주***, 김아영****

 ** *** ****

 ** *** ****
 한국해양과학기술원
 선박해양플랜트연구소
 해양안전기술연구부

* 한국해양대학교 운항훈련원


와: 해양사고의 주된 원인이 인적과실로 인한 충돌사고임에도 현재의 교육 프로그램에는 이러한 인적과실을 예방할 수 있는 내용이 포함되어 있지 않으며, 시뮬레이터를 활용한 실습교육도 매우 부족한 편이다. 본 연구에서는 상급해기사에 비해 상대적으로 시뮬레이터를 활용한 실습교육이 부족한 하급해기사의 교육을 위해 충돌사고를 예방할 수 있는 기초적 훈련이 가능한 데스크탑 기반의 보급형 교육훈련 시뮬레이터 개발내용을 소개하고자 한다.

KIOST

핵심용어 : 인적과실, 시뮬레이터, 충돌사고, 교육훈련

배경및개요

- 선박조종시뮬레이션 교육·훈련의 우수성과 교육 효율성이 입증되고 있음에도 불구하고 시뮬레이션 교육이 교육 커리큘럼에 포함되어 있지 않음
- 해양사고의 주된 원인이 인적과실로 인한 충돌사고임에도 현재의 교육 프로그램에는 이러한 인적과실을 예방할 수 있는 내용이 포함 되어 있지 않음
- STCW 2010 마닐라 개정협약이 채택에 따라 권고사항이던 BRM 교육이 2017년부터 강제될 예정임
- <u>하급해기사</u> 면허 소지자의 경우, 상급 해기사 면허 소지자에 비해 상대적으로 해기교육을 이수할 기회가 없음

† 교신저자 연회원 hongtae.kim@kiost.ac

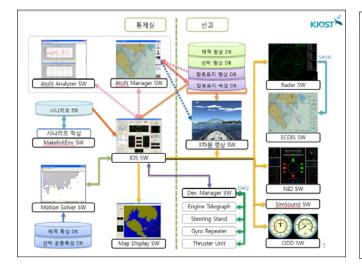
KIOST 배경및개요 • 시뮬레이션 기반 교육훈련의 교육적 특징에 따른 교육적 유익 낮다 해용: 합 핵소트 스틸 아마지 그래퍼 함다 주의 '의자이 소리 '목소리 음악 특수효과 전명적으로 여러 웹타미디어인 특성을 포함하는 시뮬레이션은 저료 특징에 맞 게 취습지인 능력에 취직함 소비: 제소리 보는 해수보고 됐는! 스타디자 유리도 구전자만 경설 차 지급 국간이나 없어! HET 플로션에의 자용도 산업자용: 및 BON지 함께 ET 등에서 보다 당시하기 등에 CRUE! 현식자 및 는 보다 보다 한 생각이 하다니게 되었다. 생각이 없는데 보다 되었다. 그런데 보다 되 높은 수준의 곤란생은 일시간 상호학용 시스템과의 의사소투

해양사고 예방용 보급형 시뮬레이터

• 시뮬레이션 기반 교육훈련의 의의

	충실'이Fidelity)	E!순장(Simplicity)
	정확도 : 현실과 가장 유사이게 묘사이어 정교만 시뮬레이션을 설계	에쪽력 : 모델은 단순만하여 복잡한 실제 현상에 대한 예쪽력은 높임
추구야는 기차	효과성 : 시뮬레이션은 등한 학습의 효과를 진대와	포용성 : 적은 비용으로 확습인 포고를 높임
	시스템의 설계 : 시스템의 수행을 높이기 위에 모델은 설계하거나 수행	시스템 이해 : 시뮬레이션을 통해 시스템에 대한 축제적 이해를 도움.
적용 분야	변인의 수가 적고 통제이기 용이한 시스템(자연과학, 공학)	변인의 수가 많고 통제하기 어려운 시스템(시회과학)
효과상 측정	실제인 환경에서 높은 수맹을 보이는가?	현상의 시스템은 잘 이해하고 있는가?

선박운항 시뮬레이터 (FMB) 구성 . D D all: D COOOD. D KIOST


해양사고 예방용 보급형 시뮬레이터

• 교육대상: 4급이하 하급면허 소지자

• 교육형태 : 이론교육(CBT) / 실습교육(Simulator)

교육내용 :

- 항내에서 조우할 수 있는 다양한 선종 및 다양한 크기의 선박들과 Crossing Situation, Head On Situation, Overtaking Situation♥ 대한 시나리오 구성
- 시나리오별로 표준조선법을 작성하여 반복 수행 후 평가
- 교육의의:
- 실무 현장에서 발생 가능한 위험한 조우관계를 토의를 통해 도출
- 해당 상황을 시뮬레이터에 재현하여 시행함으로써 현장 적응능력 과 함께 충돌회피 능력을 향상

해양사고 예방용 보급형 시뮬레이터

• 교육색 평가표이 예

世交	시뮬레이션 교육생 평가표	제 인
1	시뮬레이션 수행 전 성위를 파악 하는가 ?	
2	항해기기를 적절히 이용하는가?	
3	망원경을 이용한 건시는 시뮬레이션 중 몇 번하는가?	
4	상황별 충돌희피 동작은 적절한가?	
5	중이해도를 적절히 활용하는가?	
6	레이더에 의한 선박확인 시 망원경을 이용한 double check 하는가?	
7	선교자원별 의사소통을 원활히 진행하는가?	
\$	통신장비(VHF) 사용은 적절히 했는가?	
9	선박 조우 시 충돌회피동작 개시 시기가 적당한가?	
10	긴급상황 발생 시(인식하지 못한 선박 조우) 적절히 조치하였는가?	
mme	nt 사항	

해양사고 예방용 보급형 시뮬레이터

• 장비 - 시뮬레이터의 종류(1)

해양사고 예방용 보급형 시뮬레이터

• 소프트웨어

KIOST

- 시뮬레이션 준비 소프트웨어 : 해역관리, 선박관리, 시나리오 관리
- 감시 및 통제 소프트웨어: 시뮬레이션 제어, 환경 제어, 자선 제어, 타선 제어, 예선 제어
- 해도 전시 소프트웨어: 객체 제어, 지도 제어, 항적 전시, 측정 기능
- 선박 운동특성 재현 소프트웨어: 환경 외력 재현, 자선 운동특성 재현, 타선/예선 운동특성 재형
- 시뮬레이션 강평 소프트웨어: 항해 정보 분석 기능(상세한 항적 전시 기능, 조타 기/엔진 사용 이력) 등 제공
- 선교/기타 소프트웨어 요구사항: 3차원 가시화 소프트웨어, RADAR 소프트웨어, ECDIS 소프트웨어, CID 소프트웨어, ODD 소프트웨어, 음향 재현 소프트웨어, 장비 광리 소프트웨어
- 데이터베이스 요구사항: 해역 형상 DB, 해역 특성 DB, 선박 형상 DB, 선박 운동 특성 DB

1.4

KIOST

해양사고 예방용 보급형 시뮬레이터

• 장비 - 시뮬레이터의 종류(2)

해양사고 예방용 보급형 시뮬레이터

- 시뮬레이터 구성 검토
 - RADAR
 - ECDIS
 - CONNING
 - 조타장치
 - 대상 선박 (선박 운동특성)
 - 해역/항만 DB
 - 정밀도 낮으나 해역/선박 추가 용이
 - 꼭 필요한 기능만 탑재
 - 교육 목적에 충실한 시뮬레이터

KIOST

해양사고 예방용 보급형 시뮬레이터

- 장비의 선정시 고려사항
 - 접근의 용이성 => 이동성, 경제성 구비
 - 공간확보 가능성 => 협소공간 설치필요
 - 자습의 용이성 => 직접 조작 가능
 - 교육 횟수 및 시간 => 시뮬레이터에 대한 노출의 극대화
 - 교육 대상자 인원 => 연안 소형선 항해자 다수
 - 교육 장비 확보 예산 => 저가형 다수 설치
 - 이론 교육부터 사실적 체험 교육에 이르기까지 단계별, 주제별, 여건별 적합한 교육 장비 선정 필요

결 론

- 개발시 유의점
 - 시뮬레이션이 갖는 잠재적 강점과 효과에도 불구하고, 훈련이 설계될 때에 사려 깊은 주의와 지밀 한 계획이 실행되지 않을 경우 훈련의 효과성이 떨어지게 됨
 - 훈련생을 중심으로 연관되어 있는 다른 의사소통자, 프로그램의 실제적 수해자 등 다양한 그룹과의 연계성 있는 시뮬레이션 기반 훈련이 설계되어야 함
- 시뮬레이션 프로그램의 개선
 - 중앙 통제식 시나리오/상황부여
 - 동시에 개별 학습이 가능한 구조
- 훈련 평가시스템
- 개발 및 보급
 - 국가 R&D로 시제품 개발
 - 보급은 정부지원하에 연수원, 해양대, 해양수산청에 실비 보급
- 기대효과
 - 영세한 해운업체의 해기사 시뮬레이터 교육 기회 확대
 - 내항선 인적과실 해양사고 획기적 저감

175

KIOST

후 기

13

이 연구는 해양수산부의 해양안전기술개발사업(인적요인에 의한 해양사고 예방 및 관리기술 개발)의 연구결과임.