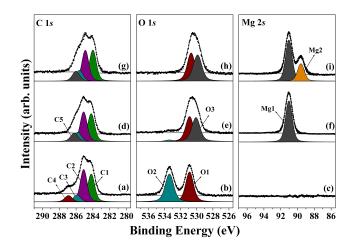
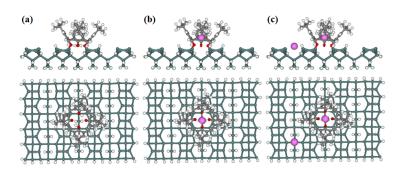
제45회 한국진공학회 하계학술대회


A Study of Mg Capping Inside p-tert-butylcalix[4]arene Adsorbed on a Ge(100) Surface


Minjeong Shin, Myungjin Lee, Hangil Lee*

Department of Chemistry, Sookmyung Women's University, Seoul 140-742, Republic of Korea

The electronic and adsorption structures of Mg and p-tert-butylcalix[4]arene (p-TBCA) adsorbed onto a Ge(100) surface under a variety of sample conditions were characterized using high-resolution photoemission spectroscopy (HRPES) and their corresponding DFT calculation results. Interestingly, after 0.10 ML p-TBCA molecules had been adsorbed onto a Ge(100) surface, subsequent adsorption of a small amount of metallic Mg (\sim 0.10 ML) resulted in the formation of a capped structure inside the pre-adsorbed p-TBCA molecules. The adsorption structures resulting from further deposition of Mg (\sim 0.50 ML) onto the Ge(100) surface were monitored based on the surface charge state and Mg 2s core level spectrum. Work function measurements clearly indicated the electronic structures of the Mg and p-TBCA adsorbed onto the Ge(100) surface. Moreover, we confirmed that three different adsorption structures are experimentally favorable at room temperature through DFT calculation results.

Keywords: Mg capping, p-tert-butylcalix[4]arene, HRPES, DFT calculation, Molecular adsorption, Ge(100)

