TW-P006

Photoluminescence Studies of ZnO Nanostructures Fabricated by Using Combination of Hydrothermal Method and Plasma-Assisted Molecular Beam Epitaxy Regrowth

<u>Giwoong Nam</u>¹, Byunggu Kim², Youngbin Park², Soaram Kim¹, Sang-heon Lee³, Jong Su Kim⁴, Jae-Young Leem^{1,2}*

¹Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Gimhae, Gyungnam 621-749, ²Department of Nano Engineering, Inje University, Gimhae, Gyungnam 621-749, ³School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, ⁴Department of Physics, Yeungnam University, Gyeongsan 712-749, Korea

ZnO nanostructure was fabricated on a Si substrate using two-step growth. The seed layer was grown on the Si substrate by a sol-gel spin-coating. In the first step, ZnO nanorods were grown by a hydrothermal method at 140°C for 5 min. In the second step, a ZnO thin film was grown on the ZnO nanorods by spin-coating. After growth, these films were annealed at 800°C for 10 min. Electrical and optical properties of ZnO nanostructures have modified by plasma-assisted molecular beam epitaxy (PA-MBE) regrowth. The carrier concentration and resistivity increased by PA-MBE regrowth. In the photoluminescence, the full width at half maximum and intensity were decreased and increased, respectively, by PA-MBE regrowth.

Keywords: ZnO, Molecular beam epitaxy, Photoluminescence

TW-P007

Synthesis and Temperature-Dependent Local Structural Properties of Ti2O3

Inhui Hwang¹, Zhenlan Jin¹, Changin Park¹, Bingzhi Jiang², S.-W. Han¹*

¹Department of Physics Education and Institute of Fusion Science, Chonbuk National University, Jeonju 561-756, Korea, ²Department of Physics, Yanbian University, Yanji 133002, China

Ti2O3 is known as a typical Mott insulator with a transition temperature of near 200°C. Unlike VO2, Ti2O3 does not have a structural phase transition near the metal-insulator-transition (MIT) temperature. We investigated the temperature-dependent thermal vibration change using temperature-dependent x-ray absorption fine structure (XAFS) at Ti K-edge in the temperature range of $300 \sim 600$ K. Ti2O3 powder and films were synthesized using thermal chemical vapor deposition (CVD) at $800 \sim 900^{\circ}$ C. X-ray diffraction measurements show a single phased Ti2O3 at room temperature. XAFS confirmed no structural phase transition in the temperature of $300 \sim 600$ K. A small but distinguishable structural disorder change was observed near the transition temperature. We will discuss the MIT behavior with the change of structural disorder.

Keywords: Ti2O3, disorder, MIT, structure