TF-P012

Super Coupling Dual-gate Ion-Sensitive Field-Effect Transistors

Hyun-June Jang, Won-Ju Cho

Department of Electronic Materials Engineering, Kwangwoon University

For more than four decades, ion-sensitive field-effect transistor (ISFET) sensors that respond to the change of surface potential on a membrane have been intensively investigated in the chemical, environmental, and biological spheres, because of their potential, in particular their compatibility with CMOS manufacturing technology. Here, we demonstrate a new type of ISFET with dual-gate (DG) structure fabricated on ultra-thin body (UTB), which highly boosts sensitivity, as well as enhancing chemical stability. The classic ion-sensitive field-effect transistor (ISFET) has been confronted with chronic problems; the Nernstian response, and detection limit with in the Debye length. The super-coupling effects imposed on the ultra thin film serve to not only maximize sensitivity of the DG ISFET, but also to strongly suppress its leakage currents, leading to a better chemical stability. This geometry will allow the ISFET based biosensor platform to continue enhancement into the next decade.

Acknowledgments

This research was supported by the Converging Research Center, funded by the Ministry of Education, Science and Technology (No. 2012K001352).

Keywords: ISFET

Body	Sensitivity	Linearity	VH	Drift rate	VHerror	Drift rateerror
thickness	(mV/pH)	(%)	(mV)	(mV/h)	(%)	(%)
100 nm	124	98.29	102	12.45	83.26	10.04
50 nm	170	98.62	34.66	12.04	20.39	7.08
20 nm	258	98.81	54.49	13.34	21.12	5.17
5 nm	416	99.79	63.56	19.65	15.29	4.72

Table 1. Sensing properties of the DG ISFETs with various body thicknesses extracted from the DG measurement.

제 45 회 하계학술대회 239