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The p-type GaN which act as a hole injection layer in GaN-based LEDs has fundamental problems. The
first one arises from the difficulty in growing a highly doped p-GaN (with a carrier concentration
exceeding ~1018 cm”). And the second one is the absence of appropriate metals or conducting oxides
having a work function that is larger than that of p-type GaN (7.5 eV). Moreover, the LED efficiency is
decreases gradually as the injection current increases (the so-called‘efficiency droop’ phenomenon). The
efficiency droop phenomenon in InGaN quantum wells (QWs) has been a large obstacle that has hindered
high-efficiency operation at high current density. In this study, we introduce the new approaches to
improve the light-output power of LEDs by using graphene oxide sheets. Graphene oxide has many
functional groups such as the oxygen epoxide, the hydroxyl, and the carboxyl groups. Due to nature of
such functional groups, graphene oxide possess a lot of hole carriers. If graphene oxide combine with LED
top surface, graphene oxide may supply hole carriers to p-type GaN layer which has relatively low free
carrier concentration less than electron concentration in n-type GaN layer. To prove the enhancement factor
of graphene oxide coated LEDs, we have investigated electrical and optical properties by using ultra-violet
photo-excited spectroscopy, confocal scanning electroluminescence microscopy.
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