Selection Analysis of Databases to Manage Big Data
Sungbum Park” - Sangwon Lee” - Hyunsup Ahn~ - In-Hwan Jung
"Department of Management Planning, National Information Society Agency
“D. of Information & Electronic Commerce (I of Convergence & Creativity), Wonkwang University
“"Department of Wirtschaftsinformatik, Technische Universitat Braunschweig
““Department of Computer Engineering, Hansung University

E-mail: parksb@nia.or.kr, sangwonlee@wku.ac.kr, hs.ahn@tu-bs.de, ihjung@hansung.ac.kr
o oF
- =

suolEE By elA AgaE NoSQLE F 714 528 248 /HAT A o Ze Al
A meadee] AR Folt A3t HolH A2 45 wol: Aotk adu, Be sd 4%
ANAE olefF HFAT AYEol A weHm YA Wk YuolHe] Aol ELH B
2o} B4 91814 E NoSQL 714 AH§8A olokdA & ARetr] Hol, ojZeAold =217
Mol Auds Aol dd AUE F5A717] A% HiES WS

Ae Zaee A4, dolE A2 A%, A3 #el Sof o) @

ABSTRACT

There are two major factors to use NoSQL in order to manage Big Data; to increase productivity of an
application programmer and to increase data access performance. But, in many business fields, this hopeful plan
lacks careful consideration. For efficient and effective management and analysis of Big Data, it is necessary to
perform a test with the expectation for productivity and performance of the application programmer before
deciding whether NoSQL technique is used or not. In this paper, we research on programmer productivity, data
access performance, risk distribution, and so forth..

II™E

Big Data, Selection Analysis, Databases, Program Productivity

1. Introduction data access performance, using Relational Databases
and risk management (Figure 1).
In many business fields, this hopeful plan lacks

careful consideration. For efficient and effective II Considerations in Selecting Databases for

management and analysis of Big Data, it is necessary Big Data
to perform a test with the expectation for productivity
and performance of the application programmer before The first consideration in selecting databases for Big

deciding whether NoSQL technique is used or not. In Data is programmer productivity. It is generally
this paper, we research on programmer productivity, — accepted that a definition of programmer productivity

— 258 —

SH0|E #2|E It CIOIEH|0|A MFEM

needs to be established and agreed upon. Appropriate
metrics need to be established. Productivity needs to
be viewed over the lifetime of code. Programming
productivity means a variety of software development
issues and methodologies affecting the quantity and
quality of code produced by an individual or team. A
key topic in productivity discussions is amount of code
that can be created or maintained per programmer.
The amount of code is often measured in source lines
of code per day. The second topic is to detect and
avoid errors. The detection is performed by techniques
like Agile Software Development, six sigma
management, zero defects coding, and Total Quality
Management. The last topic is software cost estimation.
Of course, the cost is a direct consequence of
productivity. ~ The importance of programming
productivity has improved along with other industry
factors, such as the relative costs of manpower
versus. In the field of unstructured or semi-structured
data, NOSQL systems are more efficient and effective
in managing and handling Big Data.

Programmer
Productivity Data
Access
Performance

Relational
Databases

Risk
Management

Figure 1. Four Decisions for Big Data

The second consideration in selecting databases for
Big Data is data access performance. Data access
typically refers to software and activities. The
activities are storing, defining, retrieving, or acting on
data housed in a database or other repository.
Sequential access and random access are two types of
data access. Since data access can help distinguish the
abilities of administrators and users, data access is
simply the authorization you have to access different
data files. With including each different database, file
system, and many of these repositories stored their
content in different and incompatible formats, every

repository requires different methods and languages. It
is very important to perform a test with valuable
scenarios for NoSQL databases.

The third consideration in selecting databases for
Big Data is to use Relational Databases with NoSQL.
Even though NoSQL is a best solution for Big Data, it
is not a panacea for Big Data. It is meaningful to
optionally use Relational Databases with NoSQL.

The last consideration in selecting databases for Big
Data is risk management. Risk management is a
process of identification, analysis and either acceptance
or mitigation of uncertainty in investment
decision-making when using databases for Big Data.
Whenever a user or data operator analyzes and
attempts to quantify the potential for losses in
managing database, risk management would occur
anytime. Especially, risk management would do so
when taking appropriate actions or inaction ones, given
their investment objectives and risk tolerance.
Inadequate risk management would certainly cause
severe consequences for companies as well as
individuals in handling and analyzing Big Data.
Traditional approaches such as Data Mapper and
Repository (Fowler PoEAA) would be helpful in
encapsulating the process of selecting databases,

III. Conclusions

In sum, there are two major factors to use NoSQL
in order to manage Big Data; to increase productivity
of an application programmer and to increase data
access performance. For effective and efficient
management of Big Data, it is necessary to perform a
test for programmer productivity and data access
performance before choosing databases. If not
strategic, most of applications may use Relational
Databases techniques.

References

[11 A B M Moniruzzaman and Syed Akhter Hossain,
“NoSQL Database: New Era of Databases for Big data
Analytics - Classification and Characteristics and
Comparison,” International Journal of Database Theory
and Application, Vol. 6, No. 4, 2013.

[2] Burton H. Bloom, “Space/Time Trade-offs in
Hash Coding with Allowable Errors,” Communications
of the ACM, Vol. 13, No. 1, pp. 422-426, 1970.

[3] Christof Strauch, NoSQL Databases,
Media University Press, 2012.

[4] Edgar F. Codd, “A Relational Model of Data for
Large Shared Data Banks,” Communications of the
ACM, Vol. 13, No. 6, pp. 377-387, 1970.

[5] John Ousterhout, Parag Agrawal, David Erickson,
Christos Kozyrakis , Jacob Leverich, David Mazieres,
Subhasish Mitra, Aravind Narayanan, Guru Parulkar,
Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann
and Ryan Stutsman, “The Case for RAMClouds:
Scalable High-Performance Storage Entirely in
DRAM,” SIGOPS Operating Systems Review, Vol. 43,
No. 1, pp. 92-105, 2010.

Stuttgart

- 259 -

ro

IHBENSHS| 2013 FHISESHECHS

[6] Joshua Bloch, Effective Java - Programming
Language Guide, Addison-Wesley Longman, 2001.

[7] Marcos K. Aguilera, Wojciech Golab and Mehul
A. Shah “A Practical Scalable Distributed B-Tree,”
Proceedings of the VLDB Endowment, Vol. 2008, No.
1, pp. 598-609, 2008.

[8] Patrick O’ Neil, Edward Cheng, Dieter Gawlick
and Elizabeth O’ Nell, “The Logstructured
Merge-Tree,” Acta Informatica, Vol. 33, No. 4, pp.
351-385, 1996.

[9] Pramod Sadalage and Martin Fowler, NoSQL
Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence, Addison-Wesley, 2012.

[10] Stavros Harizopoulos, Daniel J. Abadi, Samuel
Madden and Michael Stonebraker, “OLTP through the
Looking Glass, and What We Found Fhere,” ACM
SIGMOD International Conference on Management of
Data, Vol. 2008, No.1, pp. 981-992, 2008.

- 260 -

