
- 258 -

빅데이터 관리를 위한 데이터베이스 선정분석

박승범* · 이상원** · 안현섭*** · 정인환****

*한국정보화진흥원 경영기획부
**원광대학교 정보전자상거래학부(융복합창의연구소)

***브라운슈바이크공과대학 경영정보학과
****한성대학교 컴퓨터공학과

Selection Analysis of Databases to Manage Big Data

Sungbum Park* · Sangwon Lee** · Hyunsup Ahn*** · In-Hwan Jung****

*Department of Management Planning, National Information Society Agency
**D. of Information & Electronic Commerce (I. of Convergence & Creativity), Wonkwang University

***Department of Wirtschaftsinformatik, Technische Universität Braunschweig
****Department of Computer Engineering, Hansung University

E-mail: parksb@nia.or.kr, sangwonlee@wku.ac.kr, hs.ahn@tu-bs.de, ihjung@hansung.ac.kr

요 약

빅데이터를 관리하기 위해서 사용하는 NoSQL은 두 가지 중요한 요소를 가지고 있다. 애플리케이
션 프로그래머의 생산성을 높이는 것과 데이터 접근 성능을 높이는 것이다. 그러나, 많은 기업 현장
에서는 이러한 바람직한 계획들이 철저히 고려되고 있지 않다. 빅데이터의 효과적이고 효율적인 관
리와 분석을 위해서는 NoSQL 기술을 사용할지 말아야할지를 결정하기 전에, 애플리케이션 프로그래
머의 생산성과 성능에 대한 기대를 충족시키기 위한 테스트를 필수적으로 수행해야한다. 본 논문에
서는 프로그래머 생산성, 데이터 접근 성능, 위험 관리 등에 대해 연구하고자 한다.

ABSTRACT

There are two major factors to use NoSQL in order to manage Big Data; to increase productivity of an
application programmer and to increase data access performance. But, in many business fields, this hopeful plan
lacks careful consideration. For efficient and effective management and analysis of Big Data, it is necessary to
perform a test with the expectation for productivity and performance of the application programmer before
deciding whether NoSQL technique is used or not. In this paper, we research on programmer productivity, data
access performance, risk distribution, and so forth..

키워드

Big Data, Selection Analysis, Databases, Program Productivity

I. Introduction
In many business fields, this hopeful plan lacks

careful consideration. For efficient and effective
management and analysis of Big Data, it is necessary
to perform a test with the expectation for productivity
and performance of the application programmer before
deciding whether NoSQL technique is used or not. In
this paper, we research on programmer productivity,

data access performance, using Relational Databases
and risk management (Figure 1).

II. Considerations in Selecting Databases for Big Data
The first consideration in selecting databases for Big

Data is programmer productivity. It is generally
accepted that a definition of programmer productivity

빅데이터 관리를 위한 데이터베이스 선정분석

- 259 -

needs to be established and agreed upon. Appropriate
metrics need to be established. Productivity needs to
be viewed over the lifetime of code. Programming
productivity means a variety of software development
issues and methodologies affecting the quantity and
quality of code produced by an individual or team. A
key topic in productivity discussions is amount of code
that can be created or maintained per programmer.
The amount of code is often measured in source lines
of code per day. The second topic is to detect and
avoid errors. The detection is performed by techniques
like Agile Software Development, six sigma
management, zero defects coding, and Total Quality
Management. The last topic is software cost estimation.
Of course, the cost is a direct consequence of
productivity. The importance of programming
productivity has improved along with other industry
factors, such as the relative costs of manpower
versus. In the field of unstructured or semi-structured
data, NOSQL systems are more efficient and effective

in managing and handling Big Data.

Programmer
Productivity Data

Access
Performance

Relational
Databases

Risk
Management

Figure 1. Four Decisions for Big Data

The second consideration in selecting databases for
Big Data is data access performance. Data access
typically refers to software and activities. The
activities are storing, defining, retrieving, or acting on
data housed in a database or other repository.
Sequential access and random access are two types of
data access. Since data access can help distinguish the
abilities of administrators and users, data access is
simply the authorization you have to access different
data files. With including each different database, file
system, and many of these repositories stored their
content in different and incompatible formats, every

repository requires different methods and languages. It
is very important to perform a test with valuable
scenarios for NoSQL databases.

The third consideration in selecting databases for
Big Data is to use Relational Databases with NoSQL.
Even though NoSQL is a best solution for Big Data, it
is not a panacea for Big Data. It is meaningful to
optionally use Relational Databases with NoSQL.

The last consideration in selecting databases for Big
Data is risk management. Risk management is a
process of identification, analysis and either acceptance
or mitigation of uncertainty in investment
decision-making when using databases for Big Data.
Whenever a user or data operator analyzes and
attempts to quantify the potential for losses in
managing database, risk management would occur
anytime. Especially, risk management would do so
when taking appropriate actions or inaction ones, given
their investment objectives and risk tolerance.
Inadequate risk management would certainly cause
severe consequences for companies as well as
individuals in handling and analyzing Big Data.
Traditional approaches such as Data Mapper and
Repository (Fowler PoEAA) would be helpful in
encapsulating the process of selecting databases,

III. Conclusions
In sum, there are two major factors to use NoSQL

in order to manage Big Data; to increase productivity
of an application programmer and to increase data
access performance. For effective and efficient
management of Big Data, it is necessary to perform a
test for programmer productivity and data access
performance before choosing databases. If not
strategic, most of applications may use Relational
Databases techniques.

References
[1] A B M Moniruzzaman and Syed Akhter Hossain,

“NoSQL Database: New Era of Databases for Big data
Analytics – Classification and Characteristics and
Comparison,” International Journal of Database Theory
and Application, Vol. 6, No. 4, 2013.

[2] Burton H. Bloom, “Space/Time Trade-offs in
Hash Coding with Allowable Errors,” Communications
of the ACM, Vol. 13, No. 1, pp. 422-426, 1970.

[3] Christof Strauch, NoSQL Databases, Stuttgart
Media University Press, 2012.

[4] Edgar F. Codd, “A Relational Model of Data for
Large Shared Data Banks,” Communications of the
ACM, Vol. 13, No. 6, pp. 377-387, 1970.

[5] John Ousterhout, Parag Agrawal, David Erickson,
Christos Kozyrakis , Jacob Leverich, David Mazières,
Subhasish Mitra, Aravind Narayanan, Guru Parulkar,
Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann
and Ryan Stutsman, “The Case for RAMClouds:
Scalable High-Performance Storage Entirely in
DRAM,” SIGOPS Operating Systems Review, Vol. 43,
No. 1, pp. 92-105, 2010.

한국정보통신학회 2013 추계종합학술대회

- 260 -

[6] Joshua Bloch, Effective Java - Programming
Language Guide, Addison-Wesley Longman, 2001.

[7] Marcos K. Aguilera, Wojciech Golab and Mehul
A. Shah “A Practical Scalable Distributed B-Tree,”
Proceedings of the VLDB Endowment, Vol. 2008, No.
1, pp. 598-609, 2008.

[8] Patrick O’Neil, Edward Cheng, Dieter Gawlick
and Elizabeth O’Neil, “The Logstructured
Merge-Tree,” Acta Informatica, Vol. 33, No. 4, pp.
351-385, 1996.

[9] Pramod Sadalage and Martin Fowler, NoSQL
Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence, Addison-Wesley, 2012.

[10] Stavros Harizopoulos, Daniel J. Abadi, Samuel
Madden and Michael Stonebraker, “OLTP through the
Looking Glass, and What We Found Fhere,” ACM
SIGMOD International Conference on Management of
Data, Vol. 2008, No.1, pp. 981-992, 2008.

