High Transparent, High Mobility MoO3 Intergraded InZnO Films for Use as a Transparent Anode in Organic Solar cells

Hyo-Jung Kim¹, Sin-Bi Kang¹, Seok-In Na², Han-Ki Kim¹*

¹Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, ²Professional Graduate School of Flexible and Printable Electronics, Polymer Materials Fusion Research Center, Chonbuk National University

We reported on the electrical, optical, structural and morphological properties fabricated by co-sputtering for use as an anode for organic solar cells (OSCs). By adjusting RF and DC power of MoO₃ and IZO targets during co-sputtering, we fabricated the MoO₃-IZO electrode with graded content of the MoO₃ on the IZO films. At optimized MoO₃ thickness of 20 nm, the MoO₃ graded IZO electrode showed a higher mobility (33 cm²/V-Sec) than directly deposited MoO₃ on IZO film (26 cm²/V-Sec). At visible range (400nm~800nm), optical transmittance of the MoO₃ graded IZO electrode is higher than that of directly deposited MoO₃ on IZO film. High mobility of MoO₃ graded on IZO is attributed to less interface scattering between MoO₃ and IZO. To investigate the feasibility of MoO₃ graded IZO films, we fabricated conventional P3HT:PCBM based OSCs with MoO₃ graded IZO as a function of MoO3 thickness. The OSC fabricated on the MoO₃ graded IZO anode showed a fill factor of 66.53%, a short circuit current of 8.121 mA/cm², an open circuit voltage of 0.592 V, and a power conversion efficiency of 3.2% comparable to OSC fabricated on ITO anode and higher than directly deposited MoO₃ on IZO film. We suggested possible mechanism to explain the high performance of OSCs with a MoO₃ graded IZO.

Keywords: Transparent conducting oxide (TCO), graded, Organic solar cell