Red AGNs becoming normal AGNs

  • Kim, Dohyeong (Seoul National University) ;
  • Im, Myungshin (Seoul National University) ;
  • Glikman, E. (Middlebury College) ;
  • Woo, Jong-Hak (Seoul National University) ;
  • Urrutia, T. (Leibniz-Institut fur Astrophysik Potsdam)
  • Published : 2014.10.13

Abstract

Red active galactic nuclei (AGNs) are supposed to be transitional objects becoming normal AGNs in the galaxy evolution scenario. So far, ~200 red AGNs have been found by very red color in optical through NIR wavelength (e.g., r'-K >5 and J-K>1.3; Urrutia et al. 2009). Here, we compare nuclear activities of the red AGNs to those of normal AGNs to verify the evolutionary phase of the red AGNs. In order to study the nuclear activities of the red AGNs, we use broad emission lines of $P{\beta}$ ($1.28{\mu}m$) of which flux is less suppressed by a factor of 100 than the $H{\beta}$ line in the case of the red AGNs with a color excess of E(B-V)=2 mag. We use 16 red AGNs discovered in previous red AGN surveys by using SDSS, 2MASS, and FIRST (Glikman et al. 2007; Urrutia et al. 2009) at z ~0.7 for which $P{\beta}$ lines are redshifted to the sky window at ${\sim}2.2{\mu}m$. The mean Eddington ratio of the 16 red AGNs is 0.562, and that of the normal AGNs is 0.320, which indicates the red AGNs include more active black hole (BH) than the normal AGNs. To test how significantly the nuclear activities of the red AGNs and the normal AGNs are different, we perform a two-dimensional Kolmogorov-Smirnov test (K-S test) on their Eddington ratio distributions. The K-S test shows the maximum deviation between the cumulative distributions, D, is 0.48, and the probability of null hypothesis, p, is even less than 0.001. This result is consistent with a picture of that the red AGNs are in intermediate phase between the stage of merger-driven starburst galaxy and the normal AGN.

Keywords