

205

A Scalability Performance Study for General-Purpose Applications on

HTCaaS :The Database Perspective

Seungwoo Rho*, Jik-Soo Kim**, Sangwan Kim***, Seoyoung Kim****, Soonwook Hwang*****

KISTI, Korea

E-mail : seungwoo0926@kisti.re.kr*, jiksoo.kim@kisti.re.kr**, Sangwan@kisti.re.kr***

sssyyy77@kisti.re.kr****, hwang@kisti.re.kr*****

1. Introduction

HTCaaS(High-Throughput Computing as a Service)[1] is a pilot-job[2] based multi-level scheduling system that
enables scientists to solve their complex and demanding scientific problems. We are currently exploiting a centralized
relational database to record and monitor the status of application tasks and pilots running. We also support web
services that can be utilized for communication between different components in HTCaaS. However, as we increase
the number of computing resources concurrently connected to our HTCaaS server, the number of threads processing
database queries and the communication traffic between database and server become substantial. This means that the
scalability of our HTCaaS server can depend on the processing capability of the database machine so that the clock
speed and memory size of the database machine can limit the maximum throughput of our system. In this paper, we
present detailed analysis of performance impacts of our database system in HTCaaS and show directions of
improving scalability of our system to support more challenging scientific applications.

2. Scalability Experiments of HTCaaS on PLSI

In this section, we briefly introduce our HTCaaS system and present our work on optimizing and tuning database
configurations and experimental results that can address scalability issue to accommodate thousands of computing
cores in supercomputing infrastructures in Korea.

HTCaaS consists of 7 different modules which can be categorized into agent management and service
management (providing web service APIs). The agent management is responsible for job scheduling & processing,
resource assignment and agent deployment, and consists of Agent Manager and agent (pilot-job). The service
management provides web services to communicate with each other components and includes Account Manager,
Database Manager (based on MySQL), Monitoring Manager, Userdata Manager and Job Manager. HTCaaS adopted
OGF JSDL[3] standard as a job description language which provides parameter sweep functions to enable scientists
to submit a large of jobs conveniently and also provides an easy-to-use GUI/CLI/Web portal. HTCaaS is currently
running as a pilot service on top of PLSI (Partnership & Leadership for the nationwide Supercomputing
Infrastructure)[4] which provides researchers with an integrated view of geographically distributed supercomputing
infrastructures in Korea. The total computing resources of PLSI are about 7,448 cores, linked with General Parallel
File System (GPFS)[5] as a global shared storage and PLSI uses IBM LoadLeveler(LL) as a global scheduler.

Database optimization & tuning for the better performance typically consists of two kinds of methods, global and
thread variable. Generally, global variable tuning method is carried out first and then thread variable tuning is
performed. There are many metrics to tune database and optimal values can be found throughout long-term and
regular database monitoring. In this paper, we only selected core metrics that can affect server performance the most
significantly and set those values considering the amount of physical memory.

Among the global variable, max-connection is the most important factor for HTCaaS scalability, which is
determined by the size of physical memory (our database machine has a 16GB of memory). The general formula[6] to
compute this metric is shown in Table 3. The table 3 is for both MyISAM and InnoDB storage engines, but our
system mainly uses InnoDB storage engine because this engine is more appropriate for many task processing.
MySQL can also exploit until maximum 75%(12GB in our case) of all the physical memory if we exclude data
cache/buffer.

The aim of this work is to show theoretical result for computing overall database access time in an agent
execution and experiment results to clarify the correlation between agent and database connection. In this experiment,
we do not consider job dispatch and data I/O time. Table 4 indicates average database access time of each method

206

(running and monitoring) used when one agent communicates with the database manager. Agent runs two kinds of
threads (monitoring and running) and the monitoring thread calls each method periodically to check heart beat and
exit signal. If we assume that the limit of database connection is 1 and two threads of an agent access database at the
same time, the maximum access delay time is 0.429s (First sendAgentSignal+setAgentHost). So, if ten agents try to
connect the same database with one limited thread, the maximum access delay time will be about 4.29s.

Figure 1shows the number of average database connections used when the number of agents increases from 25 to
400 on PLSI. Three color lines represent the length of a job execution (from 0, 30 to 60 seconds). Most of real
applications we use have a job length more than 60 seconds and one of them has the job length of about 20 seconds.
So, we selected three kinds of job execution times which can show that HTCaaS can support more challenging
scientific applications. As the length of a job increases, the average growth of the database connection decreases. As
we can see from gradients of green and red lines (60 and 30 seconds of job execution times respectively) in Figure 1,
we can expect the quantity of stably manageable agents to be much larger since 400 agents consume only 27
connections (our database can deal with 500 connection threads). Also, as we increased the number of agents twice at
each step of our experiments, the number of required database connections was quite sloping gradually, which
implies that our system can deal with larger-scale agents (probably more than 7,448 which is the number of total CPU
cores in PLSI). In addition, there is another solution to enhance agent scalability. It is to increase the monitoring
interval of agents for heartbeat. Actually, the monitoring thread only accesses the database when the agent is
processing a job and we set the heartbeat time 1 minute. Throughout our experiments, we showed that our HTCaaS
system can be successfully developed into a production-level service on top of PLSI supercomputing infrastructures
by effectively integrating thousands of CPU cores.

Figure 1. Average DB Connection

3. Conclusions and Future work

In this paper, we briefly introduced our HTCaaS system that can support large-scale scientific applications by

leveraging distributed supercomputing infrastructures in Korea and presented detailed analysis of performance
impacts of our database system. Future work is to reenact and prove this experiment with larger scale agents (more
than 7,000) on a hybrid resource environment like cloud, grid and supercomputers.

4. References

[1] JS Kim, S Rho, S Kim, S Kim, and S Hwang, “HTCaaS: Leveraging Distributed Supercomputing Infrastructures

for Large-Scale Scientific Computing”, 6th Workshop on Many-Task Computing on Clouds, Grids, and
Supercomputers (MTAGS) 2013, ACM, Denver, Colorado USA, 17-22 Nov. 2013

[2] Luckow, A., Santcroos, M., Mezky, A., Weidner, O., Mantha, P. and Jha, S., “P*: A model of pilot-abstractions”,
2012 IEEE 8th International Conference, IEEE, Chicago, 8-12 Oct. 2012, pp. 1-10

[3] Anjomshoaa, A., Brisard, F., Drescher,M., Fellows,D., Ly,A., McGough, S., Pulsipher, D., Savva, A., “Job
Submission Description Language (JSDL) Specification,Version 1.0”, GFD-R.136. Open Grid Forum (2008)

[4] http://www.plsi.or.kr/
[5] http://en.wikipedia.org/wiki/IBM_General_Parallel_File_System
[6] http://dev.mysql.com/doc/refman/5.5/en/innodb-configuration.html

