Design of 2-DoF Scanning Mirror using Electromagnetic force

전자기력을 이용한 2 자유도 스캐닝 미러 설계

  • Published : 2014.10.29

Abstract

This work proposes a two-dimensional (2-D) laser scanning mirror actuator with a simple structure composed of one magnet and four coils. The mirror-actuating device generates 2-D scanning motions about two orthogonal axes by combining electromagnetic actuators of the conventional moving-magnet types. The magnet is attached to back side of the mirror placed inside of the moving frame. The four coils is placed on the base frame in a cross shape. We implement a finite element analysis to calculate magnetic flux in the electromagnetic system with the overall size of $20mm(W){\times}20mm(D){\times}13mm(H)$ for the mirror size of $8mm{\times}8mm$. The each moving-magnet type electromagnetic actuator has the motor constant 3.41 mNm/A and the restoring constant 1.75 mNm/rad and the resonance frequency of 58 Hz and the bandwidth of 80 Hz. The proposed compact and simple 2-D scanning mirror predicted advantages of large 2-D angular deflections, wide frequency bandwidth and low manufacturing cost.

Keywords