
2014년 추계학술발표대회 논문집 제21권 제2호 (2014. 11)

Porting LLVM Compiler to a Custom Processor Architecture

Using Synopsys Processor Designer

Hyungyun Jung, Jangseop Shin, Ingoo Heo, Yunheung Paek
Dept. of Electrical and Computer Engineering, Seoul National University

e-mail: hgjung, jsshin, igheo@sor.snu.ac.kr, ypaek@snu.ac.kr

Abstract
Application specific instruction-set processor (ASIP) is a suitable design choice for system designers who seek

both flexibility to handle various applications in the domain together with the performance. Successful development
of an ASIP, however, requires a software development kit (SDK) to be provided along with the processor. Synopsys
Processor Designer is an ASIP development tool, which takes as input a set of files written in a high-level
architecture description language called LISA (Language for Instruction Set Architecture), and generates SDK as
well as RTL. Recently, they have added support for the generation of LLVM compiler backend, though some manual
work is required. In this paper, we introduce some details in porting LLVM compiler to a custom processor
architecture in Synopsys Processor Designer.

1. Introduction

Nowadays, with the development of integrated
devices, designers pursue not only higher performance
and lower power consumption, but also the flexibility of
design. In this case, traditional fixed hardware blocks,
which cannot fulfill the latter desire, are inadequate.
Application specific instruction-set processor (ASIP), a
kind of processor used in system-on-a-chip design, can
be a good alternative. The ability to offer flexibility
through software reprogrammability while limiting
overhead makes ASIP the ultimate trade-off between
performance, power consumption and flexibility.

Successful development of an ASIP, however,
requires a software development kit (SDK) to be
provided along with the processor. Synopsys Processor
Designer (SPD)[1] is an ASIP development tool, which
takes as input a set of files written in a high-level
architecture description language called LISA (Language
for Instruction Set Architecture), and generates SDK as
well as RTL. Recently, they have added support for the
generation of LLVM compiler backend which will
generate base files for porting LLVM backend to the
custom processor. But meanwhile, there still remains a
lot of details to be provided by manual work.

In this paper, we introduce some details about porting
LLVM compiler backend to the template VLIW
processor model provided by SPD as an example. The
remaining sections of this paper is organized as follows:
Section 2 briefly introduces the background on LLVM
compiler and its major compilation stages, Section 3

mainly talks about the porting details, Section 4 will
show the result, and Section 5 will finally conclude this
paper.

2. Background

LLVM compiler infrastructure[2] is an open source
compiler platform designed as a set of reusable libraries
with well-defined interfaces, which enable various
subprojects to be easily built on and architecture backend
to be added without much effort. Together with its
BSD-style license, which keeps its users from the
responsibility of disclosing their work, it has become one
of the popular open source compiler framework among
industrial as well as academic communities.

LLVM backend compilation flow consists of
numerous stages, but it can be summarized into the
following three important phases: Instruction selection,
Register allocation, and Instruction scheduling.

Instruction selection is a phase that translates the
machine independent intermediate representation (IR)
into initial target specific code. Register allocation is the
process of allocating real register numbers to virtual
registers, adding spill code if necessary.

In instruction scheduling phase, instructions are
reordered to reduce execution time, or in the case of
statically scheduled architectures like VLIW,
instructions are scheduled at appropriate cycle and slot
for fast and correct execution of the program.

For the purpose of getting the compiler to generate
working code, not optimized code, the instruction

- 53 -

2014년 추계학술발표대회 논문집 제21권 제2호 (2014. 11)

selection phase is the most important, since
corresponding machine code should be specified for each
IR pattern. Also, for statically scheduled processors,
instruction scheduling part needs some manual work,
since instruction dependence relation must be specified.

3. Porting LLVM compiler to template VLIW

architecture
When we generate an LLVM backend, SPD will

generate backend codes for an example RISC
architecture. The workload of generating codes by
manual work depends on how much the difference in our
target architecture and the example RISC architecture. In
this part we will mainly talk about the manual work done
in instruction selection phase and instruction scheduling
section phase.

3.1. Instruction selection

LLVM employs a SelectionDAG instruction selector

phase and after this phase the SelectionDAG will be
destroyed. The SelectionDAG is a directed-acyclic-graph
with its nodes are SDNode class instances. The operation
code of SDNode indicates what operation the node
represents and the operands to the operation.

Instruction selection phase in LLVM compiler is
mainly constructed by three steps: Type legalization,
Operation legalization, and Instruction selection.

3.1.1. Type legalization
By operating on the SelectionDAG nodes, type

legalization removes the types which target machine
does not support. Basically there are two ways of the
type legalization: promoting (convert small type into
large one) and expanding (convert large type into small
one).

Since our target VLIW template matched the example
RISC implementation very well, there was no need to
make modifications in this step.

3.1.2. Operation legalization
Similar to the type legalization, by operating on the

SelectionDAG nodes, operation legalization removes the
operations which target machine does not support. To
distinguish if the operation is supported by the target
machine, in the DAG->Legalize () function, we set one
of the following three flags to each circumstance: Legal,
Expand, and Custom.

There is a list of operation node definitions provided
(figure 1), and what we need to do in this step is to find
out proper pattern for target architecture. If we can find a
matching pattern of operations for target architecture, we
simply use these operations and set the flags of them to
Legal, otherwise we need to set flags to Expand or
Custom.

For example, conditional branch selection operation in
the example RISC architecture, was implemented by
node CMPCC. The pattern of node_cmpcc (figure 1, line
1), which uses a temporary register CC to store the
conditional flag true or false, does not match our target
VLIW architecture which does not contain a CC register.
Then we found out that another node SELECT perfectly
matches the pattern of our target architecture. So we
comment the node CMPCC and change the flag
of ISD::SELECT to Legal (figure 2, the flag was Expand
in example RISC architecture). In the same way we take
usage of node SETCC and also set its flag to Legal.

(Figure 1) Provided Operation Nodes.

(Figure 2) setOperationAction with three kinds of flags.

3.1.3. Instruction selection
This step will map the SelectionDAG operations to the

target instructions by doing the pattern matching, and
translate machine independent SelectionDAG into target
specific instruction DAG.

As the example shown in figure 3, in template VLIW
architecture, this step will do the pattern matching which
maps machine
independent) int specific)
which was generated manually.

(Figure 3) Instruction Selection.

3.2. Instruction scheduling

For static scheduling architecture like VLIW, where
complex hazard detection hardware logic is absent,
compiler is responsible for positioning instructions in
order to prevent resource conflicts and data hazards.
Thus, low level architecture information like, in which
VLIW slot can execute which instructions, in which

- 54 -

2014년 추계학술발표대회 논문집 제21권 제2호 (2014. 11)

pipeline stage the source operands are read and the
destination operands are written for each instruction,
should be provided to the compiler. By using these
information, compiler can implement the schedule
correctly. For this purpose, SPD provides scheduler
template at the very last stage of the compilation flow.
The scheduler template uses three tables, each
corresponding to RAW, WAR, WAW hazard, to
calculate the latency between any two instructions.

Assume that all the instructions read their register
operands in the second stage of the pipeline, and the
result of ADD instruction is available in the next cycle,
except the result of MUL instruction is available after
two cycles. Also assume that the hardware includes full
bypassing logic, then the instruction using the result of
ADD can be scheduled at the next cycle, but the
instruction using the result of MUL should be scheduled
after two cycles.

s in ADD instruction are
of class 0 and those for MUL instruction are of class 1.
To find out how many cycles the instruction should be
apart from defining instruction, the scheduler consults
RAW latency table, using the class number as the index.
The table is actually two dimensional, covering the case
where some instruction reads operands at different
pipeline stages from others. For RAW hazards, defined

the operands using the
value are . For WAR hazards, read operands

(Figure 4) Latency Table.

Now, for each instruction, we only need to provide
information about which operands belong to which class,
when read operands are used as source/sink and when
def operands are used as source/sink. Then the
scheduler can compute the latency between any two
instructions, and also compute the correct schedule for
instructions.

Usually available functions for different VLIW slots
are not the same. For example, operations that change
program flow are only permitted in one of the slots,

operations in one VLIW word. To take this into account,
we added a getValidSlotMask () function to tell the

scheduler in which slots each instruction can be
scheduled.

3.3. Others

To complete LLVM backend, other minor code pieces
should be implemented, including calling convention,
frame lowering, expanding pseudo instructions, and
assembly printing.

Calling convention for the architecture should be
described in XXCallingConv.td file, which provides
information about how function arguments are passed to
the callee, and how the callee returns value to the caller.

Frame lowering provides information about which
instructions should be added at the start/end of the
function to set up/destroy stack frame for the function.

Expanding pseudo instruction transforms temporary
instructions into real machine instructions. Instead of
mapping all IR code directly into real machine code in
instruction selection stage, some instructions are mapped
to pseudo code and later expanded into real code. One
example is loading large immediate into a register, which
cannot be done with one instruction due to the restricted
immediate field in instruction word. It is mapped to the
pseudo instruction at first and later will be replaced by
correct sequence of real instructions which usually
consist of loading upper and lower part of the register.

Finally, assembly printing part should be fixed so that
VLIW words are printed according to the syntax pattern
expected by the assembler.

4. Result

The test case used in porting LLVM compiler to
template VLIW architecture is called Annotate-
From-Scratch (AFS) build test case, a list of C test codes
to check if the ported LLVM compiler is working
correctly. The AFS test case will check the correctness
of totally 50 C test codes including ALU operations,
load/store operations, branch operations and so on.

After the manual work, we generated all the target
specific machine instructions for corresponding machine
independent operations, modified the target description
XX.td files and the scheduler files to match the target
VLIW architecture. As a result, after manual generations
and modifications, all the 50 AFS test codes have been
passed through successfully.

5. Conclusion & Future Works

In this paper, we first made an introduction to the
ASIP and SPD, then briefly mentioned the background

- 55 -

2014년 추계학술발표대회 논문집 제21권 제2호 (2014. 11)

of LLVM and LLVM compilation flow, then mainly
talked about the details of porting LLVM compiler to
template VLIW architecture, and finally stated the result.
By generating the target specific machine instructions
and modifying the target description XX.td files and the
scheduler files, we made the AFS test case of LLVM
compiler to template VLIW architecture built
successfully.

With the experience of this porting LLVM compiler to
a custom processor architecture project, we are going on
with developing an ASIP for a hand gesture recognition
system, and porting a corresponding LLVM compiler
backend for it.

6. Acknowledgement

This research was partly supported by the Engineering
Research Center of Excellence Program of Korea
Ministry of Science, ICT & Future Planning (MSIP) /
National Research Foundation of Korea (NRF) (Grant
NRF-2008-0062609), the IT R&D program of
MSIP/KEIT [K10047212, Development of
homomorphic encryption supporting arithmetics on
ciphertexts of size less than 1kB and its applications],
Business for Cooperative R&D between Industry,
Academy, and Research Institute funded by Korea Small
and Medium Business Administration in 2014, the Brain
Korea 21 Plus Project in 2014 and IDEC.

7. Reference

[1] Synopsys Inc., Synopsys Processor Designer,
http://www.synopsys.com/Systems/BlockDesign/Processo
rDev/Pages/default.aspx
[2]

framework for lifelong program analysis & tr
Proceedings of the 2004 International Symposium on Code
Generation and Optimization, pp. 75-86, March 2004.

- 56 -

