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Abstract 
Application specific instruction-set processor (ASIP) is a suitable design choice for system designers who seek 

both flexibility to handle various applications in the domain together with the performance. Successful development 
of an ASIP, however, requires a software development kit (SDK) to be provided along with the processor. Synopsys 
Processor Designer is an ASIP development tool, which takes as input a set of files written in a high-level 
architecture description language called LISA (Language for Instruction Set Architecture), and generates SDK as 
well as RTL. Recently, they have added support for the generation of LLVM compiler backend, though some manual 
work is required. In this paper, we introduce some details in porting LLVM compiler to a custom processor 
architecture in Synopsys Processor Designer. 

 
1. Introduction 

Nowadays, with the development of integrated 
devices, designers pursue not only higher performance 
and lower power consumption, but also the flexibility of 
design. In this case, traditional fixed hardware blocks, 
which cannot fulfill the latter desire, are inadequate. 
Application specific instruction-set processor (ASIP), a 
kind of processor used in system-on-a-chip design, can 
be a good alternative. The ability to offer flexibility 
through software reprogrammability while limiting 
overhead makes ASIP the ultimate trade-off between 
performance, power consumption and flexibility. 

Successful development of an ASIP, however, 
requires a software development kit (SDK) to be 
provided along with the processor. Synopsys Processor 
Designer (SPD)[1] is an ASIP development tool, which 
takes as input a set of files written in a high-level 
architecture description language called LISA (Language 
for Instruction Set Architecture), and generates SDK as 
well as RTL. Recently, they have added support for the 
generation of LLVM compiler backend which will 
generate base files for porting LLVM backend to the 
custom processor. But meanwhile, there still remains a 
lot of details to be provided by manual work. 

In this paper, we introduce some details about porting 
LLVM compiler backend to the template VLIW 
processor model provided by SPD as an example. The 
remaining sections of this paper is organized as follows: 
Section 2 briefly introduces the background on LLVM 
compiler and its major compilation stages, Section 3 

mainly talks about the porting details, Section 4 will 
show the result, and Section 5 will finally conclude this 
paper. 

 
2. Background 

LLVM compiler infrastructure[2] is an open source 
compiler platform designed as a set of reusable libraries 
with well-defined interfaces, which enable various 
subprojects to be easily built on and architecture backend 
to be added without much effort. Together with its 
BSD-style license, which keeps its users from the 
responsibility of disclosing their work, it has become one 
of the popular open source compiler framework among 
industrial as well as academic communities. 

LLVM backend compilation flow consists of 
numerous stages, but it can be summarized into the 
following three important phases: Instruction selection, 
Register allocation, and Instruction scheduling. 

Instruction selection is a phase that translates the 
machine independent intermediate representation (IR) 
into initial target specific code. Register allocation is the 
process of allocating real register numbers to virtual 
registers, adding spill code if necessary. 

In instruction scheduling phase, instructions are 
reordered to reduce execution time, or in the case of 
statically scheduled architectures like VLIW, 
instructions are scheduled at appropriate cycle and slot 
for fast and correct execution of the program. 

For the purpose of getting the compiler to generate 
working  code, not optimized  code, the instruction 
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selection phase is the most important, since 
corresponding machine code should be specified for each 
IR pattern. Also, for statically scheduled processors, 
instruction scheduling part needs some manual work, 
since instruction dependence relation must be specified. 

 
3. Porting LLVM compiler to template VLIW 

architecture 
When we generate an LLVM backend, SPD will 

generate backend codes for an example RISC 
architecture. The workload of generating codes by 
manual work depends on how much the difference in our 
target architecture and the example RISC architecture. In 
this part we will mainly talk about the manual work done 
in instruction selection phase and instruction scheduling 
section phase. 

 
3.1.  Instruction selection 

LLVM employs a SelectionDAG instruction selector 

phase and after this phase the SelectionDAG will be 
destroyed. The SelectionDAG is a directed-acyclic-graph 
with its nodes are SDNode class instances. The operation 
code of SDNode indicates what operation the node 
represents and the operands to the operation. 

Instruction selection phase in LLVM compiler is 
mainly constructed by three steps: Type legalization, 
Operation legalization, and Instruction selection. 

 
3.1.1. Type legalization 
By operating on the SelectionDAG nodes, type 

legalization removes the types which target machine 
does not support. Basically there are two ways of the 
type legalization: promoting (convert small type into 
large one) and expanding (convert large type into small 
one).  

Since our target VLIW template matched the example 
RISC implementation very well, there was no need to 
make modifications in this step. 

 
3.1.2. Operation legalization 
Similar to the type legalization, by operating on the 

SelectionDAG nodes, operation legalization removes the 
operations which target machine does not support. To 
distinguish if the operation is supported by the target 
machine, in the DAG->Legalize () function, we set one 
of the following three flags to each circumstance: Legal, 
Expand, and Custom. 

There is a list of operation node definitions provided 
(figure 1), and what we need to do in this step is to find 
out proper pattern for target architecture. If we can find a 
matching pattern of operations for target architecture, we 
simply use these operations and set the flags of them to 
Legal, otherwise we need to set flags to Expand or 
Custom. 

For example, conditional branch selection operation in 
the example RISC architecture, was implemented by 
node CMPCC. The pattern of node_cmpcc (figure 1, line 
1), which uses a temporary register CC to store the 
conditional flag true or false, does not match our target 
VLIW architecture which does not contain a CC register. 
Then we found out that another node SELECT perfectly 
matches the pattern of our target architecture. So we 
comment the node CMPCC and change the flag 
of ISD::SELECT to Legal (figure 2, the flag was Expand 
in example RISC architecture). In the same way we take 
usage of node SETCC and also set its flag to Legal. 

 
(Figure 1) Provided Operation Nodes. 

 
(Figure 2) setOperationAction with three kinds of flags. 

 
3.1.3. Instruction selection 
This step will map the SelectionDAG operations to the 

target instructions by doing the pattern matching, and 
translate machine independent SelectionDAG into target 
specific instruction DAG. 

As the example shown in figure 3, in template VLIW 
architecture, this step will do the pattern matching which 
maps machine 
independent) int specific) 
which was generated manually. 

 
(Figure 3) Instruction Selection. 

 
3.2.  Instruction scheduling 

For static scheduling architecture like VLIW, where 
complex hazard detection hardware logic is absent, 
compiler is responsible for positioning instructions in 
order to prevent resource conflicts and data hazards. 
Thus, low level architecture information like, in which 
VLIW slot can execute which instructions, in which 
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pipeline stage the source operands are read and the 
destination operands are written for each instruction, 
should be provided to the compiler. By using these 
information, compiler can implement the schedule 
correctly. For this purpose, SPD provides scheduler 
template at the very last stage of the compilation flow. 
The scheduler template uses three tables, each 
corresponding to RAW, WAR, WAW hazard, to 
calculate the latency between any two instructions. 

Assume that all the instructions read their register 
operands in the second stage of the pipeline, and the 
result of ADD instruction is available in the next cycle, 
except the result of MUL instruction is available after 
two cycles. Also assume that the hardware includes full 
bypassing logic, then the instruction using the result of 
ADD can be scheduled at the next cycle, but the 
instruction using the result of MUL should be scheduled 
after two cycles. 

s in ADD instruction are 
of class 0 and those for MUL instruction are of class 1. 
To find out how many cycles the instruction should be 
apart from defining instruction, the scheduler consults 
RAW latency table, using the class number as the index. 
The table is actually two dimensional, covering the case 
where some instruction reads operands at different 
pipeline stages from others. For RAW hazards, defined 

the operands using the 
value are . For WAR hazards, read operands 

 

 
(Figure 4) Latency Table. 

Now, for each instruction, we only need to provide 
information about which operands belong to which class, 
when read operands are used as source/sink and when 
def operands are used as source/sink. Then the 
scheduler can compute the latency between any two 
instructions, and also compute the correct schedule for 
instructions. 

Usually available functions for different VLIW slots 
are not the same. For example, operations that change 
program flow are only permitted in one of the slots, 

operations in one VLIW word. To take this into account, 
we added a getValidSlotMask () function to tell the 

scheduler in which slots each instruction can be 
scheduled. 

 
3.3.  Others 

To complete LLVM backend, other minor code pieces 
should be implemented, including calling convention, 
frame lowering, expanding pseudo instructions, and 
assembly printing. 

Calling convention for the architecture should be 
described in XXCallingConv.td file, which provides 
information about how function arguments are passed to 
the callee, and how the callee returns value to the caller. 

Frame lowering provides information about which 
instructions should be added at the start/end of the 
function to set up/destroy stack frame for the function. 

Expanding pseudo instruction transforms temporary 
instructions into real machine instructions. Instead of 
mapping all IR code directly into real machine code in 
instruction selection stage, some instructions are mapped 
to pseudo code and later expanded into real code. One 
example is loading large immediate into a register, which 
cannot be done with one instruction due to the restricted 
immediate field in instruction word. It is mapped to the 
pseudo instruction at first and later will be replaced by 
correct sequence of real instructions which usually 
consist of loading upper and lower part of the register. 

Finally, assembly printing part should be fixed so that 
VLIW words are printed according to the syntax pattern 
expected by the assembler. 

 
4. Result 

The test case used in porting LLVM compiler to 
template VLIW architecture is called Annotate- 
From-Scratch (AFS) build test case, a list of C test codes 
to check if the ported LLVM compiler is working 
correctly. The AFS test case will check the correctness 
of totally 50 C test codes including ALU operations, 
load/store operations, branch operations and so on. 

After the manual work, we generated all the target 
specific machine instructions for corresponding machine 
independent operations, modified the target description 
XX.td files and the scheduler files to match the target 
VLIW architecture. As a result, after manual generations 
and modifications, all the 50 AFS test codes have been 
passed through successfully. 

 
5. Conclusion & Future Works 

In this paper, we first made an introduction to the 
ASIP and SPD, then briefly mentioned the background 
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of LLVM and LLVM compilation flow, then mainly 
talked about the details of porting LLVM compiler to 
template VLIW architecture, and finally stated the result. 
By generating the target specific machine instructions 
and modifying the target description XX.td files and the 
scheduler files, we made the AFS test case of LLVM 
compiler to template VLIW architecture built 
successfully. 

With the experience of this porting LLVM compiler to 
a custom processor architecture project, we are going on 
with developing an ASIP for a hand gesture recognition 
system, and porting a corresponding LLVM compiler 
backend for it. 
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