
2014년 추계학술발표대회 논문집 제21권 제2호 (2014. 11)

SDN

 ,

e-mail : tuanhiep1232@gmail.com, kyungbaekkim@jnu.ac.kr

Resource Attack Based On Flow Table Limitation in SDN

Hiep T. Nguyen Tri, Kyungbaek Kim
Department of Electronics and Computer Engineering

Chonnam National UniversityRepublic of Korea

Abstract

In Software Defined Network (SDN), data plane and control plane are decoupled. Dummy switches on the
data plane simply forward packet based on the flow entries that are stored in its flow table. The flow entries are
generated by a centralized controller that acts as a brain of the network. However, the size of flow table is limited
and it can conduct a security issue related to Distributed Denial of Service (DDoS). Especially, it related to
resource attack that consumes all flow table resource and consumes controller resources. In this paper, we will
analyze the impact of flow table limitation to the controller. Then we propose an approach that is called Flow Table
Management to handle flow table limitation.

1. Introduction

SDN opens a new approach to design and manage a
network. SDN separates the control plane and data plane,
which are tightly coupled in a traditional network. But, in
SDN, the network devices such as switches and access points
are responsible for forwarding packets based on flow entries
that are installed by a centralized controller. The centralized
controller acts as a brain which processes routing information
and makes decision for configure a network, and it manages
the rules for how to handle the packets. When a network
device receives a packet, the device tries to find a flow entry
which has the matches to the header of the packet. If the
network device does not find any matched flow entry, it asks
the controller how to handle the packet.

With this dynamic updates of flow tables of network
devices, SDN makes a network more flexible and easier to
manage. However, even though SDN provides many benefits
to a network, the dynamic feature may lead some security
issues. A central controller is a highly valuable target for
malicious attackers to compromise a network. A controller is
the brain of a network, and if the brain does not work
properly the operations of the entire network can be
influenced. Generally obtaining the full control of a
controller is not easy, but it is easy for attackers to make a
controller very busy and disturbing the operation of the
network. DDoS attack is one of the simple attacks to disturb
a controller and this kind of attack has been facilitated by
user friendly tools such as Stacheldraht.

Especially, in SDN, attackers can exploit the asking
controller of switches whenever they receive an unknown
header packet to launch a resource attack by sending bogus
packets [1] [2] [3]. A flow table which contains the
information for handling packets is the most importance
component of a network device. However, the flow table size

is limited as few hundreds of flow entries for recent
OpenFlow switch [4] [5]. Attacker can easily exploit this
limitation to fill the network device flow table. And then he
can send the high load traffic to the network. Because the
flow table of network device is full, whenever it receives a
packet, it has to send a request to ask the controller. With
high load traffics, the resources that controller consumes can
be very big. It impacts to the performance of the network and
also impacts to the performance of the network. A similar
attack scenario was mentioned in [6]. However, the impact of
this resource attack has not been explored in detail. In this
paper, firstly we will analyze and explore the impact of the
resource attack to the SDN. And then we will propose an
approach called Flow Table Management to handle flow
table limitation.

The paper is organized as follows. In section II, we will
describe the operation of SDN network, the analysis of
consequence when the flow reaches the limitation. In section
III, we discuss the possible solutions to mitigate the resource
attack. Finally, we conclude the paper in section IV.

2. Resource Attack in SDN

In this section we first describe operation of SDN, and
then we analyze the impact of flow table limitation.

A. SDN Operation

Figure 1 illustrates the basic SDN operations for
transferring traffic of a flow. Firstly, the source host sends the
first packet of a flow to the network device (1). Secondly, the
network device looks up matched flow entries. If there is no
matched flow entry, the network device sends a request to the
controller (2). In the controller, the request will be forwarded
to the control application. Thirdly, based on the knowledge of
the network, the application makes a decision and tries to

- 215 -

2014년 추계학술발표대회 논문집 제21권 제2호 (2014. 11)

install flow entries to all of the network devices along the
path of the packet (3). After installing the flow entries, the
application sends back the packet to the network device
which requests the flow entries as well as to the last network
device of the path of the packet. Then the last network device
forwards the first packet to the destination host (4). After
deploying flow entries in every network devices, the network
devices handle the following packets of the flow by referring
the instruction field of the deployed flow entry (5).

(Figure 1) SDN Operation.

B. Resource Attack in SDN
Generally many SDN devices employ the Ternary

Content-Addressable Memory (TCAM) as storing the flow
table and lookup flow entries for a given packet header.
TCAM is a specialized high-speed memory that searches its
entire contents in a single clock cycle, but it has some
disadvantages; such as high power consumption, high cost,
and low utility of ASCI space. That is, increasing the
memory space of TCAM can lead to other problems about
the price, the energy, and the physical size of network
devices. According to this, generally the size of flow table of
a network device is not that big. For example, the 5406zl
switch can support about 1500 OpenFlow rules or 64000
forwarding entries for standard Ethernet switching [4].

This size issue of a flow table has not been concerned
seriously under legacy networks, but in SDN it can be a
serious issue. SDN is traffic oriental rather than host oriental,
which means we may have to install multiple flow entries for
each host in the network. Therefore, the number of the flows
may be much bigger than the number of hosts in the network.
That is, there is a high possibility that a flow table reaches its
limitation with normal SDN operations. While the size
limitation of a flow table causes a scalability issue, it may
also cause a security issue. That is, the size limitation of a
flow table may be an attractive attack point for malicious
attackers who want to subvert a SDN network. Attackers
easily fill up a flow table by sending raw packets with
different packet headers. Actually this kind of attack requires
simple knowledge of network programming and it can be
easily facilitated by using naive traffic generation tools.

Let we imagine how the controller acts when the flow
table becomes full. Figure 2 and 4 show two different
procedures of handling the new request when the flow tables
of all network devices are full. In figure 2, the controller
application fails to install new flow rule to the network
devices. However, the controller application will forward the
packet by itself. That is, the controller application responds
directly to the last network device in place of responding
back to the switch which requested the controller. Actually,
we encountered this procedure when we were testing the
OpenDayLight controller with its default forwarding

application. We can observe that every packet which does not
match any flow entry will go through the controller. This
procedure has two disadvantages. Firstly, going through
controller can lead to other issues. For example, if a firewall
sits on the middle of flow path to prevent violation traffics,
going through the controller will disable the firewall
function. The attacker can exploit this behavior of controller
application to violate protected network component.
Secondly, the attacker can exploit the controller application
behavior to generate simultaneous high load traffics after
filling the flow table. Handling all the packets of high load
traffics will consume a lot of controller resource.

Figure 2 Controller forwards the packet by itself.

Figure 3 Relation between bandwidth, packet drop and

number of flows.

We have evaluated the impact of flow table limitation to the
network performance. In our experiment, we use
OpenDayLight as controller and Mininet for emulating
network. Mininet and OpenDayLight are both installed on a
single virtual machine operated with Ubuntu 13.04. The
virtual machine has 3GB memory and 2 3.4GHz CPUs. We
consider a network which consists of 40 hosts and 2 switches.
Controller-switch delay is set to 100ms, delay between
switches is 30ms. 40 hosts are divided into 2 equal groups.
Each group connects to different switch. Firstly, we set the
flow table limitation which can support 5 flows. First, we fill
the flow table of switches by using ping command. Then we
run multiple flows at the same time and measure the
bandwidth and packet drop ratio of undeployed flows which
are does not match flow entry. To run simultaneous
undeployed flows, each host in the second group initiates an
UDP server and each host in the first group runs an UDP
client simultaneously. We vary the number of simultaneous
flows from 5 to 15. Figure 3 shows the effect of number of
simultaneous flows to bandwidth and packet drop ratio. As
the number of simultaneous undeployed flows increases, the
packet drop ratio increases linearly and the bandwidth
decreases exponentially.

The second procedure for handling the new request when
the flow tables of all network devices are full is shown is
figure 4. In this case, the controller tries to replace an old
flow entry (which can be chosen based on the expired time)

- 216 -

2014년 추계학술발표대회 논문집 제21권 제2호 (2014. 11)

by a new flow entry and then send back the packet to the
network device that request to the controller. In this case,
attacker can simultaneously send huge number of packets
that have different headers. The controller still has to
consume resource for handling packet. Therewith, controller
and switches have to spend time and processing resource for
removing and installing flow entries. Even though this
procedure keeps avoid other issues by keeping traffic goes
through data plane, the performance of controller can be
worse than the first procedure.

Figure 4 Controller replaces flow entries.

3. Flow Table Management

Figure 5 Flow Table Management Architecture.

Based on the above analysis, we highly recommend
considering resource attack which based on flow table
limitation is a serious problem with SDN security. In this
section we will describe an approach called as Flow Table
Management (FTM) to handle flow table limitation problem.

of network devices. FTM includes 3 modules Storage,
Detection and Replacement.

Storage is the module for managing flow entries of all
network devices. Flow entries are stored in 2 tables Installed
Table and Failed Table. Installed table stores the flow entries
that are successfully installed on network devices. Failed
Table stores the flow entries that are failed to install on
network devices. This module also continuously tracks the
flow table state. When a switch request to ask the controller,
Storage will first match the packet header with the flow
entries stored in the Failed Table. If there is a flow entry that
matches the packet header, Storage will immediately respond
to the network device.

Detection is a module that detects attack that based on
flow table limitation. If Detection module detects an attack,
Detection module can remove the flow entries that are
generated by attacker. If attacker continuously changes the
header, Detection module can install flow entry to drop all
packet that come from the hosts which attacker is using.

When network is not under attack, the flow table is still
able to be full. In this case, if middle layer does not replace
old entry and the new traffic has high load, the performance
of controller can be significantly degraded. If middle layer

replace the flow entry that is for routing high load traffic by a
new flow entry that is for routing light load traffic, the
performance of controller can be degraded too. Hence, a
smart replacement algorithm to optimize the performance is
required. Replacement is the module is responsible for
replacing flow entries that routes the light load traffic by
flow entries that routes the high load traffic to achieve best
controller performance.

4. Conclusion

In this paper, we have examined the impact of resource
attacks which exploit the size limitation of a flow table to the
performance of SDN. Our evaluation shows that the
performance of a controller is significantly degraded under
resource attacks if a controller application does not define the
detail handling procedures for undeployed flows. Moreover,
the size limitation issue may cause the unexpected behaviors
of a controller, which create additional security problems. We
also propose an approach that can manage the flow table of
network devices, detect the attack and smartly replace flow
entries when the flow table is full.

Acknowledgement

This work was supported by the National Research
Foundation of Korea Grant funded by the Korean
Government (NRF-2014R1A1A1007734).

Reference

[1] D. Kreutz, F. M. V. Ramos, and P.
secure and dependable software-
HotSDN, N. Foster and R. Sherwood, Eds. ACM, 2013,
pp. 55 60. [Online]. Available: http://dblp.uni-
trier.de/db/conf/sigcomm/hotsdn2013.html

[2] D. Li

GLOBECOM. IEEE, 2011, pp. 1 6. [Online]. Available:
http://dblp.unitrier.de/db/conf/globecom/globecom2011.h
tml

[3]
vulnerability
Sherwood, Eds. ACM, 2013, pp. 151 152. [Online].
Available:
http://dblp.unitrier.de/db/conf/sigcomm/hotsdn2013.html

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalag, P.
Sharma, and
management for high-performance
SIGCOMM, 2011.

[5]

Sherwood, Eds. ACM, 2013, pp. 49 54. [Online].
Available:
http://dblp.unitrier.de/db/conf/sigcomm/hotsdn2013.html

[6] S. Shin and G. Gu, Attacking software-defined networks:
A first feasibility study, in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN13. New York, NY,
USA: ACM, 2013, pp. 165.166. [Online]. Available:
http://doi.acm.org/10.1145/2491185.2491220

- 217 -

