
2014년 추계학술발표대회 논문집 제21권 제2호 (2014. 11)

 ID

Otieno Mark Brian,

 IT
e-mail : mbotieno@gmail.com, khrhee@pknu.ac.kr

A Secure Identity Management System for Secure Mobile Cloud
Computing

Otieno Mark Brian, Kyung-Hyune Rhee
Dept. of IT Convergence and Application Engineering, Pukyong National University

Abstract

Cloud computing is an up-and-coming paradigm shift transforming computing models from a technology to a
utility. However, security concerns related to privacy, confidentiality and trust are among the issues that threaten
the wide deployment of cloud computing. With the advancement of ubiquitous mobile-based clients, the ubiquity
of the model suggests a higher integration in our day to day life and this leads to a rise in security issues. To
strengthen the access control of cloud resources, most organizations are acquiring Identity Management Systems
(IDM). This paper presents one of the most popular IDM systems, specifically OAuth, working in the scope of
Mobile Cloud Computing which has many weaknesses in its protocol flow. OAuth is a Delegated Authorization
protocol, and not an Authentication protocol and this is where the problem lies. This could lead to very poor
security decisions around authentication when the basic OAuth flow is adhered to. OAuth provides an access token
to a client, so that it can access a protected resource, based on the permission of the resource owner. Many
researchers have opted to implement OpenID alongside OAuth so as to solve this problem. But OpenID similarly
has several security flows. This paper presents scenarios of how insecure implementations of OAuth can be abused
maliciously. We incorporate an authentication protocol to verify the identities before authorization is carried out.

1. Introduction

A new emerging trend in enterprise computing is the use

of Smartphone devices. Smartphones have been advanced

greatly, and so have malicious codes [1]. Smartphones are

advancing in computational power; nonetheless, their major

problem is resource poverty. Despite this, organizations are

providing access to cloud services for their users with

Smartphone-based clients [2, 3]. The location independence

and computing power of a cloud joined with mobility of

smartphone gives freedom of computing anything anywhere,

resulting in a powerful ubiquitous computing model. This

power and flexibility is bringing high popularity to Mobile

Cloud Computing (MCC) [4, 5].

Organizations are hesitant to store and communicate

valuable enterprise information to the third parties

particularly due to the threat of unauthorized access to cloud.

There have been proposal of novel authentication

mechanisms such as the deployment of centralized Identity

Management System specifically OAuth. OAuth is an open-

web specification for organizations to access protected

resources on one websites. It allows users to grant a

third-party application access to their protected content

without having to provide that application with their

credentials.

This paper is arranged as follows. In section I, we discuss

an introduction of our study followed by a review of previous

works in section II. In section III, we look at related works

and formulate a problem domain in section IV. Section V

covers the proposed method and countermeasures against

attacks on users or applications that have implemented in this

protocol. Finally, we conclude the paper in section VI.

2. Background

An identity management system manages the identities of

individuals by ensuring their integrity throughout their

lifecycle [6]. It also maintains the associated roles, access

rights, authorizations, and privileges. In OAuth, client

obtains a token the string denoting a specific scope and

limited lifetime from authorization server to access a

- 516 -

2014년 추계학술발표대회 논문집 제21권 제2호 (2014. 11)

resource, hosted on resource server. OAuth consists of four

modules (roles);

 Resource owner grants access to protected resource

 Resource server hosts protected resource

 Client is user/application that makes request to access

resource on behalf of resource owner

 Authorization server issues token to client.

The communication flow of OAuth is as follows in the

figure below:

(Figure 1)OAuth Communication Protocol

3. Related Work

Azeem et al [7] proposed a protocol to generate a

distributed authorization token composed of two parts for a

single resource access. First token is generated by IDM after

producing credentials by the user, and is sent to user and

cloud. Second token is generated by cloud and upon

producing credentials by user, it is sent to user. Cloud also

saves token for future use.

The sequence of action proposed is as follows:

1. The user logs into the cloud.
2. Cloud generates a token, and sends it to the user and

saves it for future use. Cloud requests user to produce
the token generated by IDM.

3. The user logs into the IDM.
4. IDM generates a token and sends it to both the user and

the cloud.
5. User sends both tokens from cloud and IDM to cloud to

request access.
6. Cloud compares token sent by user with tokens saved in

its database.
7. Access is granted based on comparison results.

In this scenario, both cloud and user possess two tokens,

while IDM server has access to a single token generated by it.

OpenID on the other hand presents a solution that allows

organizing all online accounts under one login, using concept

of Single Sign on (SSO) [8]. SSO authenticates users without

having to keep track of usernames and passwords for all your

have to create new credentials for every site.

4. Problem Domain

This section examines security challenges and insecure

implementations associated with this protocol. OAuth does

not provide native security nor does it guarantee privacy of

protected data [9]. It has not authenticated the User yet it has

 It relies on

implementers of OAuth, and protocols like SSL to protect

exchange of data amongst parties. Thus, most security risks

do not reside within the protocol itself, but rather its use.

Key Concepts

Server represents the Resource Provider while User

represents the Resource Owner. Client represents the

Consumer and Client Credentials are the consumer key and

consumer secret to authenticate the Client. Token

Credentials are access token and token secret used in place

The insecure storage of secrets is an area of concern

especially two main areas; the shared secrets on the server

and the consumer secrets on cross-platform clients.

To compute oauth_signature, Server must access shared-

secrets (signed combination of consumer secret and token

secret) in plaintext format as opposed to a hashed value. If

Server and all its shared-secrets are compromised via

physical access or engineering exploits, an attacker owns all

credentials and can act on behalf of any Resource Owner of

the compromised Server.

OAuth Clients use a combination of consumer key and

secret to provide their authenticity to Server. This allows

Clients to uniquely identify themselves to Server, giving

Resource Provider ability to keep track of source of all

requests. It also allows Server to let User know which Client

application is attempting to gain access to their account and

protected resource

Securing consumer secret on browser-based web

application clients introduces same challenges as securing

- 517 -

2014년 추계학술발표대회 논문집 제21권 제2호 (2014. 11)

shared-secrets on Server. OAuth's dependency on browser-

based authorization creates an inherit implementation

Main concern is when implementers store and obfuscate the

key/secret combination in Client application itself. This

makes key-rotation almost impossible and enables

unauthorized access to decompiled source code where

consumer secret is stored.

The core function of consumer secret is to let Server know

which Client is making request. So compromised consumer

secret does not directly gr

However, compromised consumer credentials could lead to

some security threats:

 Server must keep track of all Clients and their

authenticity, therefore safeguarding consumer credential

is critical.

 Attacker uses compromised Client Credential to imitate

valid Client and launch phishing attack by submitting

request to Server on behalf of victim to access sensitive

data.

Regardless, whenever consumer secret of mobile Client

application is compromised, Server must revoke access for

all users of the compromised Client application. Client must

then register a new key which is a lengthy process, embed it

into the application as part of a new release and deploy it to

all its Users. This is a hectic process that could take weeks to

As regards OpenID, it uses a single sign-on protocol

which permits users to sign in to a range of websites with

their accounts [10]. This results in security flaws where

scammers can be able to log into the websites as somebody

else. With OAuth, there is naive expectation that access

token is coming from resource owner. Hard reality is people

go to questionable websites and use websites such as

Facebook or Twitter to login. This avoids sharing their email

and password with site. The problem is in the authentication

case, Websites do have incentive to inappropriately reuse the

access token. Token is no longer just for accessing protected

resource; it now carries an implicit notion the possessor is the

resource owner. So we end up in a situation where any site

the user logs into with their Facebook account can

impersonate that user at any other site that accepts Facebook

logins [11].

There is nothing in the OAuth client-side flow that proves

the issuer you sent the request to through the browser ever

received it and is the one responding. Only the access_token

parameter is generated by the Authorization server, all the

other parameters are dropped. The threat arises because the

client has no way to tell who the authorization server issued

the access_token to.

5. Proposed Solution

Integrity protection of client credentials and token

credentials works well when the tokens are stored on servers.

Secrets can be isolated and stored in database or file-system

with proper access control and file encryption.

Current OAuth mobile Client applications embed Client

Credentials directly into application. Obfuscation is being

employed as an alternative for secure implementation.

Obfuscate consumer secret by splitting it into segments or

shifting characters by an offset, then embed it in the

application.

Implementing a better architectural concept requires some

deviation from typical OAuth flow: The Service Provider

could require Clients to bind their Consumer Credentials

with a device-specific identifier.

Prior to initial OAuth handshake;

 Mobile application authenticates User to the Client

application via username and password.

 Mobile Client then retrieves the Device ID from the

-end server and stores it securely on the

device itself.

 Once initial request is submitted to Server with both

Client Credentials and Device ID, Service Provider

back-end server.

The proposed OAuth handshake and delegation workflow

follows the steps as shown in figure 2.

1.
2. Client Device Authenticates the User via a browser or

API
User enters his Client's username and password to the

-server

- 518 -

2014년 추계학술발표대회 논문집 제21권 제2호 (2014. 11)

3. The Web-server Authenticates User using Client's
credentials and assigns a Device ID
Device ID is stored within Device keychain
(manually or by Webserver API)

4. The Device gets a Token Request
5. The Server validates the authenticity of the Tokens
6. The Web-server provides Verification for Device ID
7. The Server then provides temporary Request Token

and the Flow continues to Authorization

credentials to the Client application. Instead, it provides the

Client application with temporary access authorization that

User can revoke if necessary. So when Server is not sure of

rely on these attributes to validate the Client.

(Figure 2) OAuth Handshake and Delegation Workflow

6. Conclusion

As web grows, more sites rely on distributed services and

cloud computing. With today's integrated web, users demand

more functionality in terms of usability and cross platform

integration. It's up to implementers and security professionals

to safeguard user and also organizational data. Implementers

should not rely solely on protocols only to provide all

security measures. Implementers should instead be careful to

consider all the avenues of attack exposed by an individual

protocol, and therefore design the applications with the

security risks factored in.

This paper presents OAuth protocol and outlines some of

the security concerns related to its authentication mechanism.

Despite being coupled with OpenID as an authentication

protocol, there are still some security flaws. This paper

therefore brings out the solution by proposing an alternative

protocol to help in authentication by binding their consumer

credentials with a device specific identifier.

Acknowledgement

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education (NRF-

2013R1A1A4A01009848)

References

[1]
devices on the 2012 International Conference on
Information Society (i-Society), 2012, pp. 59 64.
[2
Implementations for Mobile Wireless Software Applications
within Organizations. Minneapolis: Graduate Faculty of the
School of Business and Technology Management,

[3
Business Smart
3-14, 2011
[4] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li,

 resource-poor mobile devices with powerful
clouds: architectures, IEEE
Wireless Communications, vol. 20, no. 3, pp. 14 22, 2013.
[5] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya,

 mobile cloud computing: Taxonomy and
op IEEE Communications Surveys Tutorials,
vol. Early Access Online, 2013.
[6
Reading, MA: Addison-Wesley Professional, 2002.
[7] A. Ahmad, M. M. Hassan, A. Aziz A Multi-Token
Authorization Strategy for Secure Mobile Cloud
Computing 2nd IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering, 2014.
[8] M. A. P. Leandro, T. J. Nascimento, D. Santos, D. R, C.
M. -Tenancy
Authorization System with Federated Identity for Cloud-
Based Environments Using
ICN 2012, The Eleventh International Conference on
Networks, 2012, pp. 88 93.
[9] D. H.
[Online]: http://tools.ietf.org/html/draft-ietfoauth-v2-31.
[10] "http://openid.ne/.".
[11] K. Kiani, Four Attacks on OAuth How to Secure Your
OAuth Implementation, SAN Institute, 2011

- 519 -

