PW-001

Density Functional Theory Calculations for Chemical Reaction Mechanisms of C_4F_8

<u>최희철</u>, 송미영, 윤정식

국가핵융합연구소 플라즈마기술연구센터

Recently, it has been shown that the ω B97X-D/aVTZ method is strongly recommended as the best practical density functional theory(DFT) for rigorous and extensive studies of saturated or unsaturated C₄F₈ species because of its high performance and reliability especially for van der Waals interactions. All the feasible isomerization and dissociation paths of C₄F₈ molecules were investigated at this theoretical level and rate constants of their chemical reactions were computed by using variational transition-state theory for a deep insight into C₄F₈ reaction mechanisms. Fates and roles of C4F8 molecules and their fragments in plasma phases could be clearly explained based on our computational results.

Keywords: C₄F₈, plasma molecule, DFT, reaction mechanism