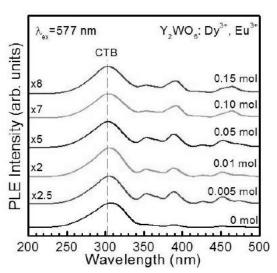

PT-P009


Dy³⁺와 Eu³⁺ 이온이 동시 도핑된 Y₂WO₆ 형광체의 구조와 발광 특성 이동규, 조선욱, 조신호

신라대학교 신소재공학과

최근에 백색 발광체 개발에 많은 관심이 고조되고 있다. 본 연구에서는 고상반응법을 사용하여 활성제 이온 Dy^{3+} 의 함량을 0.05 mol로 고정하고, Eu^{3+} 이온의 함량을 각각 0,0.5,1,5,10,15 mol%로 변화시켜 Y_2WO_6 : Dy^{3+} , Eu^{3+} 형광체 분말을 합성하였다. Dy^{3+} 이온만 도핑된 Y_2WO_6 형광체의 흡광 수펙트럼은 전하전달 밴드 $(Dy^{3+}-O^{2-})$ 에 의한 $250\sim350$ nm에 존재 하는 밴드폭이 넓은 전이 신호와 $360\sim500$ nm 영역에 걸쳐 있는 상대적으로 흡광 세기가 약한 다수의 Dy^{3+} 이온의 전이 신호가 관측 되었다. Dy^{3+} 와 Eu^{3+} 가 동시 도핑된 Y_2WO_6 형광체의 발광 스펙트럼의 경우에, Eu^{3+} 이온의 몰 비가 증가함에 따라 Dy^{3+} 이온에 의한 577 nm에 주 피크를 갖는 황색 발광 파장의 세기는 감소하였고, Eu^{3+} 이온에 의해 발생하는 612 nm의 적색 발광 파장의 세기는 순차적으로 증가하였다. 이 결과는 Dy^{3+} 와 Eu^{3+} 이온의 몰 비를 적절히 조절함으로써 최적의 백색 발광 형광체를 제조할 수 있음을 제시한다.

Keywords: 백색 형광체, 발광, 고상반응법, 흡광,

