유방촬영장치에서 압박대 재질에 관한 연구

A Study on the Compression paddle of meterials in Mammography

홍동희*.***. 정홍량.**

한서대학교 보건의료학과*·한서대학교 방사선학과**· 극동대학교 방사선학과***

Hong Dong-Hee, Jung Hong-Ryang Dept. of Health Care. Hanseo University* Dept. of Radiological Science, Hanseo University* Dept. of Radiological Science, Far East University**

요약

유방촬영은 날로 증가추세에 있으며 압박을통해 영상을 얻는 것이 화질을 향상시키고 피폭선량을 줄이는데 필수적이다. 그러나 압박대 자체의 두께로 인해 산란선과 피폭선량을 증가시킬 수 있으므로 압박대 재질에 대한 고찰이 필요하다. 현재 임상에서 쓰 이고 있는 재질은 폴라카보네이트이며 플라스틱 계열이다. 환자의 피폭선량을 줄이기위해 노력한다면 이보다 더 좋은 재질에 대 해 고려해볼 필요가 있기에 본 연구에서는 플라스틱 계열 물질 중 비결정 플라스틱에 대한 방사선투과성에 대해 비교해 보고자 한다.

I. 서론

유방암 발생율이 증가되면서 유방촬영술(Mammography) 의 검사건수가 증가 되어가고 있다. 유방촬영술이란 유 방암을 조기에 감별진단하기 위하여 압박을 통해 종괴의 크기와 모양 등을 정밀하게 진단 가능하도록 고안된 검 사방법이다.

유방촬영에서 유방의 압박은 필름과 유방을 밀착시켜 화질을 향상시킨다. 그러므로 유방의 압박은 필수 사항 이며 투과력이 약한 low energy를 사용하므로 압박대 재 질은 방사선 투과력에 영향을 미쳐서는 안된다. 또한, 압 박대의 두께는 방사선을 추가로 요하게 되며 환자에게 불필요한 방사선량을 가중시키게 된다. 그러므로 최소한 의 방사선 감약으로 유방을 압박시켜 영상을 표현시키게 하는 것이 압박대 재질의 필수요건이 된다. 현재 이에 가 장 부합한 재질로 폴리카보네이트(Polycarbonate: PC) 를 임상에서 많이 사용하고 있으며 플라스틱의 일종으로 내충격성, 내열성, 내후성, 자기 소화성, 투명성 등의 특 징이 있다.

플라스틱은 합성수지(Synthetic)라고도 하며 크게 열경 화성 수지와 열가소성 수지로 나뉜다. 이들 중 현재 압박 대 재질로 많이 쓰이고 있는 폴리카보네이트는 열가소성 수지로 투명성을 띄는 비결정성 플라스틱에 속한다. 비 결정성 플라스틱에는 폴리카보네이트와 비슷하거나 더 우수한 강도와 광 투과성을 지닌 물질이 많다. 이들을 폴 리카보네이트 와 비교 평가해보고 그에 대한 새로운 재 질을 제안해 보고자 한다.

Ⅱ. 연구내용 및 방법

1. 검사 장비

기존의 폴리카보네이트와 가장 비슷한 비결정성 플라 스틱인 PMMA, GPPS, HIPS, ABS, Tritan의 방사선 투과 도와 화질을 비교해 보았다.

촬영 장비는 디지털 X선 유방촬영장치(Alpha ST, GE, Germany)를 사용하였다. 장치의 Target/Filter 조합은 Mo/Mo 이며, FOV 18×24 cm의 CR(Computed Radiography) type 장비를 사용하였다

선량측정은 Raysafe Xi 선량계를 이용하였고, 각 물질 을 검사 시와 최대한 동일한 조건에서 평가하기 위하여 ACR phantom을 이용하였으며, 산란선량을 최대한 줄이 기 위하여 납판에 구멍을 뚫어 같은 위치인 4.5cm에 물 질과 함께 선량계를 위치시킨 후 측정하였다.

2. 검사 방법

2.1 선량 및 선질 평가

유방촬영 시와 동일한 조건을 위해 ACR 패텀을 놓고 압박대를 위치시킨 후 AEC mode에서 최적의 을 얻었다. 얻은 kVp값과 mAs값을 이용하여 그리고 모든 물질에서 동일한 위치와 선량값으로 3번씩 측정하여 평균값을 도 출해냈다.

2.2 Image J로 화질평가

각 재질에 따른 투과선량 측정 시 얻은 DICOM 파일 영상을 가지고 Image J에서 평균 pixel값을 얻어 비교평 가하였다.

Ⅲ. 결과

1. 선량 및 선질 평가

재질명	관전압 (kVp)	관전류 (mAs)	투과선량(m Gy)	HVL (mmAl)
no- paddle	28	80	8.552	0.344
PC	28	80	6.308	0.375
ABS	28	80	6.902	0.364
PMMA	28	80	6.223	0.370
GPPS	28	80	6.946	0.363
HIPS	28	80	6.951	0.363
Tritan	28	80	6.360	0.373

압박대에 의한 감약없이 측정된 선량값을 알기위해 압박대를 제거 후 선량계를 위치시켜 측정한 결과 8.552 m Gy가 나왔으며, 각 재질에 따라 투과된 선량은 PC 6.308 mGy, ABS 6.902 mGy, PMMA 6.223 mGy, GPPS 6.946 mGy, HIPS 6.951 mGy, Tritan 6.360 mGy가 측정되었다.

2. Image J로 화질평가

재질명	Mean±SD	Min	Max
no- paddle	976.655 ± 11.497	939	1022
PC	831.032 ± 10.864	793	864
ABS	871.153 ± 10.663	838	905
PMMA	819.069 ± 10.615	777	855
GPPS	873.387 ± 10.491	838	907
HIPS	874.015 ± 10.916	839	906
Tritan	834.894 ± 10.387	798	874

압박대를 제거하여 방사선 감약없이 측정된 영상은 976.655이며, 각 재질에 따른 Pixel값은 PC 831.032, ABS 871.153, PMMA 819.069, GPPS 873.387, HIPS 874.015, Tritan 834.894로 HIPS, GPPS, ABS, Tritan, PC, PMMA순으로 높게 측정되었다

Ⅳ. 결론 및 고찰

본 연구에서는 플라스틱의 성질이 가장 비슷한 비결정성 플라스틱 계열인 PC, ABS, PMMA, GPPS, HIPS, Tritan의 방사선 투과선량을 비교 평가해 보았다. 결과현재 쓰이고 있는 PC보다 ABS, GPPS, HIPS, Tritan이방사선 투과선량이 더 우수하게 나왔으며, 이는 PC보다더 좋은 재질을 적용시킬 수 있고 향후 더욱 연구를 통해 피폭선량을 줄이는데 기여할 수 있으리라 사료된다.

■ 참 고 문 헌 ■

- [1] 대한유방영상기술학회 "유방영상학" 대학서림 pp. 207-243, 2012
- [2] 롯데케미칼 http://www.lottechem.com/
- [3] Heine J J, Cao K and Thomas J A "Efeective radiation attenuation calibration for brast density:compression thickness influences and correction", Biomed. Eng., 9, pp. 73, 2010