AR AbEar a1 gk A28 7ol gk At
glolowdl” . Az
“Fojdistu
A study on Development of Remote Vehicle Fault Diagnostic System
Lionel Nkenyereye” - Jong-Wook Jang”
"Dong-Eui University

E-mail : lionelnk82@gmail.com’, jwjang@deu.ac.kr’

Ok
2

durH o i Aoy e ~ntEEZES B3 HolHASS AsAAAL d=EL HoHE
ANZoE AAHE AlE X*-’*‘—o}—t— Aol &% gEHU &2 % ZHA A o AR EE d
EE EﬂolEia_ TEtoln o ZEoA Y mukd o ofEg Aol dAH R AR, JAEle
4 HAS o dolE Mg ATt Fe=olA AP H‘P% O& Hxaso| e 94
Z}%ﬂ AZg Aol AFEHHEE 28 nodejse EHtY WELZE 53 FEsToA HlolEi | 7%
AFE OF7] f3td HAPgsith. $Ele gF oA EAIHSEZRE driver inputs and delivers
output& I 2shE HA FAY F8&Ste 2EE oAETAolddA AEAete] o EFAolA
interface WHES ALE3ts AAZE B4 d=Zol ofFF Aol WS AlEH A B3l Atd o}
71929 FEAS YFTh
o] =&olA, $E&E oHIE FZ HIE VWO E 3= o]AL YA FRE EAHOE e o
A A A3 A A 2=g AFE Agkgh

ABSTRACT

Data transmission via the car driver’ s tethered smart phone may have a volume-dependent billing
in case car driver’ phone transmits data in real-time to the remote data center. The on-board
diagnosis data generated are temporary stored locally to mobile remote diagnosis application on the
car driver’ s phone, and then transmit to the data center later when car driver connects to the
Internet. To increase the easiest of using the remote vehicle application without blocking other
tasks to be executing on the cloud, node.js stands as a suitable candidate for handling tasks of data
storage on the cloud via mobile network. We demonstrate the effectiveness of the proposed
architecture by simulating a preliminary case study of an android application responsible of real
time analysis by using a vehicle-to- smart phones applications interface approach that considers the
smart phones to act as a remote user which passes driver inputs and delivers output from external
applications. In this paper, we propose a study on development of Remote Vehicle fault diagnostic
system features web server architecture based event loop approach using node.js platform, and
wireless communication to handle vehicle diagnostics data to a data center.

Keyword
event-driven approach, remote vehicle diagnostics system, nodejs, web architecture, Connected vehicle,

On-Board Diagnostics Parameters-IDs(OBD-PIDs)

— 224 -

174 RISRE D FICH AR JHekoll chst ¢

[. Introduction

Fault detection aptitude is essential for the
survivability of a transportation system and its
users.

Data transmission cost will be a relevant
factor for the car owner in case the car
driver ‘s phone is always connected to the
car’ s diagnostics and continually transmit them
to the remote data center. Beside the cost
communication, the volume of data to be stored
at the remote is huge, so processing them and
enables quickly decision making require a
powerful distributed computational system such
as Hadoop or storing data into NoSQL database.
In addition, the design of remote mobile
application ~ should guarantee that the
computation of tasks may not prevent car
owner to use other application, so an event
loop web server on the cloud such as node.js is
suitable than a multi thread web server
architecture.

In this paper, we propose a study on
development of remote diagnostics
service that will allow a reduce cost of data

vehicle

communication and enables an asynchronous
transmission of the car’ s diagnostics and
current trouble code to the remote data center
via node.js after a certain time of driving or
when car driver uses others mobile applications
in order to save communication cost.

II . Communication Cost challenge and Data
volume for Remote Vehicle Diagnosis
Service

Data transmission of car’ s diagnostics via
tethered always
connected to the car’ s diagnostics system

car driver’ s smartphone

located near the car driver seat and
transmitting data to the remote data center
increase cost in communication. The data
transmission may not only increase cost
communication but may also limit the use of

other applications in case the architecture of

the web server responsible of handling tasks
from the mobile device to the database for
instance allows execution of all the works for
each request on individual threads, the car
owner will interrupt the data transmission when
he (she) likes use other applications installed on
histher) smart phone. In addition, the data
volume will gradually increase day after day,
and then challenge the processing tasks and
decision making. On the cloud computing side,
the relational database is not suitable because
of its inheriting design of schema and storage
constraints. To increase the easiest of using the
remote vehicle application without blocking
other tasks to be executing on the cloud,
node.js stands as a suitable candidate for
handling tasks of data storage on the cloud
via mobile network after the application have
temporary stored locally to the android mobile
private database for instance SQLite database
management. The connectivity inside the
vehicle may be established with the network
operator in three ways: embedded solution,

Tethered solution and integrated solution [2].

III. System Design for Remote Vehicle Fault
Diagnosis

This study developed a remote diagnostic
system based on OBD-II and remote datacenter
where the JavaScript runtime environment
running Google chrome’ s V8 engine known as
Node.js for the automotive engine. Figure 1
shows that this system is able to verify engine
information and existence of malfunction there
in by Bluetooth communication between the
ECUs using OBD-II
information and diagnostics troubles codes are

protocol. The engine
temporary stored on the proposed application,
then transmits to the remote data center when
the user connects to the internet or activates
internet connection while is driving. The Node.js
is responsible for handling data transmission to
a NoSQL database.

- 225 -

SIEMHEASHS| 2015 FAEESENE

3.1 Bluetooth OBD-II protocol structure for
engine status information collection

Fig. 1 System design of mobile vehicle
diagnostics system with Node.js at web side

Bluetooth communication
connection

Tmartphone-*ECUSIm 2000
Request i |

status information

eques '
message Error of request Engine

code value No Status Information
<=0100

Yes
Request PID’
=0F04050D08 N

10014
reading - Smart phone
Yes
database

Fig. 2 Flowchart of engine status information
collection algorithm

Error transferring
ECU reading to
‘Smartphone

Response
ACK and
hecksum

e
:
e b
Hode.s o o o
o unction, callbeck] | ™ gwetLecs
===

AYe
0

{ The thread is releasedfrom
| thethread poal after the
| blacking1/0 s complete

Fig. 3 Node.js server side for handling blocking
I/O request using event Queue

The OBDII is a standard that diagnoses the
information on main system of vehicles or on
failure transmitted from sensors attached to a
vehicle to ECU from a center console or
external device by using the serial
communication function [3]. Figure 2 is
proposed OBD-II protocol for this study.

3.2 Web server based Node.js for handling
car’ s diagnostics system

The event-driven based model is popular
known to its capability to assign asynchronous
and non-blocking call semantics [5].

The node.js stands for reliable web server
architecture due to the asynchronous/non-blocking
call semantics which features thread-per-connection
model. The model is the mapping of a single
thread to multiple connections. The thread then
handles all occurring events from I/O operations
of these connections and requests as shown on
the Figure 3.

IV. Implementation of Remote Vehicle
Diagnosis Fault and its results

Once the mobile remote mobile application
discovers the remote cloud web server with
Node.js, it starts request data and the action is
performed in background services. Figure 4
shows a screen shot while the car owner
monitors on-board diagnostics saved on the
SQLite database management based on the
android during his trip on his (her) mobile
device before transferring them to the remote.
Figure 5, shows establishment of communication
by the node.js server side client between the
mobile device and the web server based node.js
host. Figure 6 shows car users receives fault
trouble from the remote diagnostic data center
to their smart phone in the notification area

PIDrequest : vehicle Speed
valueRead : 96.00 (kM/h)
TimeRequest : 2015-07-20 11:45:51
SN : O

PiIDrequest : Engine coolant temperature
valueRead : —40.00 (S C)
TimeRequest : 2015-07-20 11:45:50
SN O

PIDrequest : Intake air temperature
VvalueRead : 77.00 (2 C)
TimeRequest : 201 5-07-20 11:45:50
SN O

PlDrequest : vehicle Speed
VvalueRead : 96.00 (khM/h)
TlmeRequest : 201 85-07-20 11:45:50
SN : O

PiDrequest : MAF air flow rate
valueRead : 40.00 (grams/sec)
TimeRequest : 2015-07-20 11:45:50
SN : O

PiDrequest : Engine coolant temperature
valueRead : -40.00 (©C)

TimeRequest : 2015-07-20 11:45:50

sSMN O

PlDrequest : Intake air temperature
valueRead : 77.00 (& C)

S RCoEie s o 2ollsioe 2oRINEte o

sSry s

Fig. 4 File of Vehicle performance data saved
on the SQLite database management on the car
owner mobile device

- 226 -

174 RISRE D FICH AR JHekoll chst ¢

Cloudiet Discovery finished *

Fig. 5 Discovering of Remote vehicle web

server based Node.js for client establish
communication

Fig. 6. Car User notification message of

engine’ s fault .

V. Conclusion

In this paper, we argue that concerns about
uprightness of data from traffic and on-board
diagnostics are a major step for vehicle owners,
authorities and businesses looking to take up
cloud computing, nomadic smartphones that
enable telematics services and others
value-added services. By using OBD-II protocol,
a smart phone engine diagnostic system using
Bluetooth communication was developed. In this
study, instead of handling information that can
be controlled only by car owners, it was made
possible to select necessary information only
and take control at first hand, then transferred
them to the remote vehicle diagnosis data
center at reduce cost when driver rest use his
smartphone for other purpose while the node.js
handling , storing generated car’ s status
information to a MongoDB without waiting the
remote vehicle diagnostics mobile Apps finishing
the upload process submitted to node.js. A

remote vehicle diagnostics software as a service

attests the concept of vehicle to cloud capable
of collecting diagnostics data. Therefore, with
this system it was made possible that
information of diagnostic
condition may be identified in real time and
that if engine has malfunction, by notifying
diagnostic trouble codes and information, the

car’ s system

user and car manufacturer’ s experts may
promptly respond to such malfunction.. Our
next purpose is to implement a fully prototype
to evaluate others value-added services.

Acknowledgment

References

1

(-

Minyoung, K., & Jang-Wook, J. (2012). Design

of Korea smart car driving information

checking system. International Journal of

Advanced Smart Convergence.1(1)PP:38-42

[2] GsmamAutomotive, (2013). Connecting Cars:Bring
your Own Device-Tethering Challenges.
Report on Intelligent Trasporatation system
Report, PP: 1-20

[3] D. J.Oliver, “Implementing the J1850protocol,”
http://smartdata.usbid.com/datasheets/usbid/20
00/2000-q4/j1850 wp.pdf.”

[4] Wikipedia CAN bus, http://en.wikipedia.org/
wiki/CAN bus

[5] Benjamin, E. (2012). Concurrent Programming

for Scalable web Architectures Diploma

Thesis Faculty of Engineering and Computer

Science, Institute of Distributed System,PP:45-67.

- 227 —

