
- 224 -

원격 자동차 고장 진단 시스템 개발에 대한 연구

 라이오넬*·장종욱*

*동의대학교

A study on Development of Remote Vehicle Fault Diagnostic System

Lionel Nkenyereye*·Jong-Wook Jang*

*Dong-Eui University

E-mail : lionelnk82@gmail.com*, jwjang@deu.ac.kr*

요 약

일반적으로 자동차드라이버의 스마트폰을 통한 데이터전송은 자동차운전자의 핸드폰은 데이터를
실시간으로 원격데이터 센터에 전송하는 경우에 용량 의존적인 순위를 가지고 있다. 생성되는 진단
보드 데이터들은 드라이버의 폰에서의 모바일 진단 어플리케이션에 임시적으로 저장하고, 인터넷에
연결 되었을 때 데이터 센터에 전송한다. 클라우드에서 실행에 방해하는 다른 태스크들이 없는 원격
자동차 어플리케이션 사용방법을 위한 node.js는 모바일 네트워크을 통한 클라우드에서 데이터 저장
업무를 다루기 위하여 적합하다. 우리는 외부 어플리케이션으로부터 driver inputs and delivers
output을 패스하는 원격 유저와 운용하는 스마트폰 어플리케이션에서 자동차와의 어플리케이션
interface 방법을 사용하는 실시간 분석 안드로이드 어플리케이션 반응을 시뮬레이션 통해 제안된 아
키텍쳐의 유효성을 입증한다.

이 논문에서, 우리는 이벤트 루프 접근을 기반으로 하는 이것은 웹서버 구조를 특징으로 하는 원
격 자동차 결함 진단 시스템 연구를 제안한다.

ABSTRACT

Data transmission via the car driver’s tethered smart phone may have a volume-dependent billing
in case car driver’ phone transmits data in real-time to the remote data center. The on-board
diagnosis data generated are temporary stored locally to mobile remote diagnosis application on the
car driver’s phone, and then transmit to the data center later when car driver connects to the
Internet. To increase the easiest of using the remote vehicle application without blocking other
tasks to be executing on the cloud, node.js stands as a suitable candidate for handling tasks of data
storage on the cloud via mobile network. We demonstrate the effectiveness of the proposed
architecture by simulating a preliminary case study of an android application responsible of real
time analysis by using a vehicle-to- smart phones applications interface approach that considers the
smart phones to act as a remote user which passes driver inputs and delivers output from external
applications. In this paper, we propose a study on development of Remote Vehicle fault diagnostic
system features web server architecture based event loop approach using node.js platform, and
wireless communication to handle vehicle diagnostics data to a data center.

Keyword

event-driven approach, remote vehicle diagnostics system, node.js, web architecture, Connected vehicle,

On-Board Diagnostics Parameters-IDs(OBD-PIDs)

원격 자동차 고장 진단 시스템 개발에 대한 연구

- 225 -

Ⅰ. Introduction

Fault detection aptitude is essential for the

survivability of a transportation system and its

users.

Data transmission cost will be a relevant

factor for the car owner in case the car

driver‘s phone is always connected to the

car’s diagnostics and continually transmit them

to the remote data center. Beside the cost

communication, the volume of data to be stored

at the remote is huge, so processing them and

enables quickly decision making require a

powerful distributed computational system such

as Hadoop or storing data into NoSQL database.

In addition, the design of remote mobile

application should guarantee that the

computation of tasks may not prevent car

owner to use other application, so an event

loop web server on the cloud such as node.js is

suitable than a multi thread web server

architecture.

In this paper, we propose a study on

development of remote vehicle diagnostics

service that will allow a reduce cost of data

communication and enables an asynchronous

transmission of the car’s diagnostics and

current trouble code to the remote data center

via node.js after a certain time of driving or

when car driver uses others mobile applications

in order to save communication cost.

Ⅱ. Communication Cost challenge and Data
volume for Remote Vehicle Diagnosis

Service

Data transmission of car’s diagnostics via

car driver’s tethered smartphone always

connected to the car’s diagnostics system

located near the car driver seat and

transmitting data to the remote data center

increase cost in communication. The data

transmission may not only increase cost

communication but may also limit the use of

other applications in case the architecture of

the web server responsible of handling tasks

from the mobile device to the database for

instance allows execution of all the works for

each request on individual threads, the car

owner will interrupt the data transmission when

he (she) likes use other applications installed on

his(her) smart phone. In addition, the data

volume will gradually increase day after day,

and then challenge the processing tasks and

decision making. On the cloud computing side,

the relational database is not suitable because

of its inheriting design of schema and storage

constraints. To increase the easiest of using the

remote vehicle application without blocking

other tasks to be executing on the cloud,

node.js stands as a suitable candidate for

handling tasks of data storage on the cloud

via mobile network after the application have

temporary stored locally to the android mobile

private database for instance SQLite database

management. The connectivity inside the

vehicle may be established with the network

operator in three ways: embedded solution,

Tethered solution and integrated solution [2].

Ⅲ. System Design for Remote Vehicle Fault
Diagnosis

This study developed a remote diagnostic

system based on OBD-II and remote datacenter

where the JavaScript runtime environment

running Google chrome’s V8 engine known as

Node.js for the automotive engine. Figure 1

shows that this system is able to verify engine

information and existence of malfunction there

in by Bluetooth communication between the

ECUs using OBD-II protocol. The engine

information and diagnostics troubles codes are

temporary stored on the proposed application,

then transmits to the remote data center when

the user connects to the internet or activates

internet connection while is driving. The Node.js

is responsible for handling data transmission to

a NoSQL database.

한국정보통신학회 2015 추계종합학술대회

- 226 -

3.1 Bluetooth OBD-II protocol structure for
engine status information collection

Fig. 1 System design of mobile vehicle
diagnostics system with Node.js at web side

Fig. 2 Flowchart of engine status information

collection algorithm

Fig. 3 Node.js server side for handling blocking

I/O request using event Queue

The OBDII is a standard that diagnoses the

information on main system of vehicles or on

failure transmitted from sensors attached to a

vehicle to ECU from a center console or

external device by using the serial

communication function [3]. Figure 2 is

proposed OBD-II protocol for this study.

3.2 Web server based Node.js for handling
car’s diagnostics system

The event-driven based model is popular

known to its capability to assign asynchronous

and non-blocking call semantics [5].

The node.js stands for reliable web server

architecture due to the asynchronous/non-blocking

call semantics which features thread-per-connection

model. The model is the mapping of a single

thread to multiple connections. The thread then

handles all occurring events from I/O operations

of these connections and requests as shown on

the Figure 3.

Ⅳ. Implementation of Remote Vehicle
Diagnosis Fault and its results

 Once the mobile remote mobile application

discovers the remote cloud web server with

Node.js, it starts request data and the action is

performed in background services. Figure 4

shows a screen shot while the car owner

monitors on-board diagnostics saved on the

SQLite database management based on the

android during his trip on his (her) mobile

device before transferring them to the remote.

Figure 5, shows establishment of communication

by the node.js server side client between the

mobile device and the web server based node.js

host. Figure 6 shows car users receives fault

trouble from the remote diagnostic data center

to their smart phone in the notification area

Fig. 4 File of Vehicle performance data saved

on the SQLite database management on the car

owner mobile device

원격 자동차 고장 진단 시스템 개발에 대한 연구

- 227 -

Fig. 5 Discovering of Remote vehicle web

server based Node.js for client establish

communication

Fig. 6. Car User notification message of

engine’s fault .

Ⅴ. Conclusion

In this paper, we argue that concerns about

uprightness of data from traffic and on-board

diagnostics are a major step for vehicle owners,

authorities and businesses looking to take up

cloud computing, nomadic smartphones that

enable telematics services and others

value-added services. By using OBD-II protocol,

a smart phone engine diagnostic system using

Bluetooth communication was developed. In this

study, instead of handling information that can

be controlled only by car owners, it was made

possible to select necessary information only

and take control at first hand, then transferred

them to the remote vehicle diagnosis data

center at reduce cost when driver rest use his

smartphone for other purpose while the node.js

handling , storing generated car’s status

information to a MongoDB without waiting the

remote vehicle diagnostics mobile Apps finishing

the upload process submitted to node.js. A

remote vehicle diagnostics software as a service

attests the concept of vehicle to cloud capable

of collecting diagnostics data. Therefore, with

this system it was made possible that

information of car’s diagnostic system

condition may be identified in real time and

that if engine has malfunction, by notifying

diagnostic trouble codes and information, the

user and car manufacturer’s experts may

promptly respond to such malfunction.. Our

next purpose is to implement a fully prototype

to evaluate others value-added services.

Acknowledgment

이 논문은 2015년도 Brain Busan 21사업과

2015년도 누리마루사업에 의하여 지원되었음

References

[1] Minyoung, K., & Jang-Wook, J. (2012). Design

of Korea smart car driving information

checking system. International Journal of

Advanced Smart Convergence.1(1)PP:38-42

[2] GsmamAutomotive, (2013). Connecting Cars:Bring

your Own Device-Tethering Challenges.

Report on Intelligent Trasporatation system

Report, PP: 1-20

[3] D. J.Oliver, “Implementing the J1850protocol,”

http://smartdata.usbid.com/datasheets/usbid/20

00/2000-q4/j1850 wp.pdf.”

[4] Wikipedia CAN bus, http://en.wikipedia.org/

wiki/CAN bus

[5] Benjamin, E. (2012). Concurrent Programming

for Scalable web Architectures : Diploma

Thesis Faculty of Engineering and Computer

Science, Institute of Distributed System,PP:45-67.

