Signatures of Majorana Fermions in Magnetic Atom Chains on a Superconductor

Jungpil Seo^{1,2,*}, S. Nadj-Perge², I. K. Drozdov², J. Li², H. Chen³, S. Jeon², A. H. Macdonald³, B. A. Bernevig², and A. Yazdani²

¹Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Korea ²Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ 08544, USA ³Department of Physics, University of Texas at Austin, Austin, TX 78712, USA

*jseo@dgist.ac.kr

Majorana fermion is an unconventional particle that is its own anti-plarticle. The emergence of this peculiar particle is predicted at the edge of a topological superconductor, which can be realized when a ferromagnetic material is placed in proximity to a conventional superconductor. In the experiment, we have built a ferromagnetic iron (Fe) atomic chain on the surface of a conventional superconductor (Pb). Using scanning tunneling spectroscopic techniques, we show the onset of p-wave superconductivity, and appearance of zero-energy states at the edge of the chain. This spatially resolved signature provides strong evidence for the formation of a topological phase and edge-bound Majorana fermions in the atomic chain.