높은 증폭율을 가지는 변형 Quasi-Z-소스인버터

Anh Vu Ho*, 전태원*, 이홍희*, 김흥근**, 노의철*** 울산대학교*, 경북대학교**, 부경대학교***

Modified Quasi-Z-Source Inverter with High Boost Factor

Anh Vu Ho^{*}, Tae Won Chun^{*}, Hong Hee Lee^{*}, Heung Gun Kim^{**}, Eui Cheol Nho^{***} University of Ulsan^{*}, Kyungpook National University^{**}, Pukyong National University^{***}

ABSTRACT

본 논문에서는 낮은 암단락 시간으로 높은 직류전압 증폭율 을 얻기 위하여, 기존의 QZSI에서 직류전원을 임피던스 네트 워크 내로 이동시키면서 스위칭소자를 1개 더 사용한 변형 스 위치 QZSI 회로를 제시하였다. 이 변형 스위치 QZSI에 대한 동작 해석과 함께 기존 QZSI과 성능을 비교하고, 32비트 DSP 를 사용한 실험을 통하여 제시한 회로의 성능을 확인한다.

1. 서 론

기존의 PWM인버터 교류 출력전압은 입력직류전압이하로 제한되어 있으므로 원하는 교류 출력전압을 얻기 위하여 직류 부스터회로가 추가로 필요하다. 이 기존 인버터의 문제점을 해 결하기 위하여 직류부스터회로 없이 암단락 시간제어로 직류전 압을 승압시킬 수 있는 1단 전력구조의 Quasi Z 소스 인버터 (QZSI)가 제시되었다. 이 QZSI는 입력전류가 연속이며, 커패시 터 전압 스트레스가 낮다는 장점 때문에 태양광발전시스템 등 에 많이 응용되고 있다. 그런데 이 QZSI는 암단락시간이 영전 압구간 내에서만 제어 가능하므로 직류전압 증폭율 상승에 한 계가 있으므로 출력전압이 낮은 연료전지 또는 태양광셀 등의 신재생에너지 발전시스템에 적용하기 힘들다.^[11]2]

따라서 본 논문은 낮은 암단락 시간으로 높은 직류전압 증 폭율을 얻기 위하여, 기존의 QZSI에서 직류전원을 임피던스 네트워크 내로 이동시키면서 스위칭소자를 1개 더 사용한 변형 스위치 QZSI 회로 (MS QZSI)를 제시하였다. 제시한 회로와 기존 QZSI과 특성을 비교한 후, 실험을 통하여 제시한 MS QZSI의 타당성을 확인한다.

2. 변형 스위치 QZSI

2.1 변형 스위치 QZSI

그림 1은 MS QZSI의 구조를 보인 것이다. 기존의 QZSI에 서 직류전원을 임피던스 네트워크의 다이오드와 인덕터 사이로 이동시키며, 1개의 스위칭소자 S7과 다이오드 D₀를 첨가하였다.

이 MS QZSI는 기존의 QZSI와 같이 암단락 상태와 비암닥 상태 등 2가지 상태로 동작된다.

그림 2(a)는 암단락상태의 등가회로이다. 인버터 한상의 상 단 및 하단 스위칭소자를 동시에 도통시켜 인버터 입력단자를 단락상태로 만들며, 스위칭소자 S₇을 도통시키면 두 다이오드 는 오프상태가 된다. 이 등가회로를 사용하여 유도된 두 인덕 터 전압과 직류링크전압 식은 다음과 같다.

$$V_{L1} = V_{C2}$$
 (1)

$$V_{L2} = V_{C1} + V_{in} (2)$$

$$v_{pn} = 0$$
 (3)

그림 2(b)는 비단락상태의 등가회로이다. 이 동작상태에서는 기존 인버터와 동일하게 동작하며, 스위칭소자 S7을 오프시키 고 두 다이오드는 도통상태가 된다. 이 등가회로로 부터 두 인 덕터 전압과 직류링크 전압 식은 다음과 같이 유도된다.

$$V_{L1} = V_{C2} - V_{C1} \tag{4}$$

$$V_{L2} = V_{in} - V_{C2}$$
(5)

$$v_{pn} = V_{C1} \tag{6}$$

그림 1 변형 스위치 QZSI Fig. 1 Modified Switched QZSI.

Fig. 2 Equivalent circuit Modified Switched QZSI.

식 (1)~(6)을 사용하여 MS QZSI의 전압증폭율 B 즉 직류 입력전압에 대한 직류링크 전압 피크의 비는 다음과 같다.

$$B = \frac{\widehat{V_{pn}}}{V_{in}} = \frac{1}{1 - 3D_{sh} + D_{sh}^2} \tag{7}$$

여기서 암단락 변조비 $D_{sh} = T_{sh}/T_s$ 이다.

2.2 기존 QZSI와 제시한 MS-QZSI의 성능 비교

기존 QZSI의 성능과 제시한 MS QZSI의 성능을 서로 비교 한다. 먼저 그림 3은 암단락변조비에 대한 두 회로의 전압증폭 율을 보인 것으로, 암단락변조비 전 범위에서 MS QZSI의 전 압증폭율이 높음을 알 수 있다. 다음 그림 4는 교류전압증폭율 G = M·D_{sh}의 변화에 대한 두 회로의 인버터 스위칭소자의 전 압 스트레스로 보인 것이다. 이 그림에서 MS QZSI의 스위칭 소자 전압스트레스가 QZSI에 비해 거의 1/2임을 알 수 있다.

그림 3 전압증폭율 비교 Fig. 3 Comparison of boost factor

그림 4 전압스트레스 비교 Fig. 4 Comparison of voltage stress

3. PWM기법

그림 5는 MS QZSI제어를 위한 변조기법을 보인 것이다. 출 력전압 변조비 범위를 확대할 수 있도록 3상 정현파전압에 3차 고주파 전압을 투입한 3상 기준전압 V_a^* , V_b^* , V_c^* 과 암단락시 간 제어를 위한 전압 V_p , V_n 을 삼각파와 비교하여 PWM파형을 발생시킨다. 전압 V_p , V_n 값이 증가할수록 암단락시간이 감소되 고, 스위칭소자 S_r 은 암단락 구간에서만 도통시킨다.

그림 5 PWM 패턴 Fig. 5 PWM pattern.

4. 실험결과

32비트 DSP 320F28335를 사용한 실험결과를 보인다. 여기 서 입력 직류전압은 40V, 임피던스 네트워크의 파라미터 $L_1 = L_2 = 1$ mH, $C = 1000\mu$ F이다. 그림 6은 암단락 변조비 $D_{sh} = 0.32$, 출력전압 변조비 M = 0.882일 경우, 인버터 출력전압, 커 패시터 전압, 직류링크 전압, 인덕터 전류 및 S_7 게이트신호 파 형을 보인 것이다. 커패시터 전압은 약 280V로 7배정도 증폭되 었으며, 출력선간전압이 139Vms로 출력된다.

3. 결 론

본 논문에서는 기존의 QZSI에서 직류전원을 임피던스 네트 워크 내로 이동시키면서 스위칭소자를 1개 더 사용한 변형 스 위치 QZSI 회로를 제시하였다. 기존의 QZSI에 비하여 스위전 압증폭율이 높으면서 스위칭소자의 전압스트레스가 거의 1/2수 준으로 낮음을 알수 있다. 암단락 변조비와 출력전압 변조비 각각 0.32와 0.882일 경우, 입력 직류전압 40V에서 커패시터 전압이 280V로 7배정도 증폭되었으며 출력교류전압 역시 선간 전압이 139Vms로 출력됨을 실험결과를 통하여 확인하였다.

참 고 문 헌

- J. Anderson and F. Z. peng, "A class of quasi Z source inverters," *in Conf. Rec. IEEE IAS Annu. Meeting*, Oct. 2008, pp.1 7.
- [2] H. Abu Rub, A. Iqbal, S. M. Ahmed, F. Z. Peng, Y. Li, and B. Ge, "Quasi Z source inverter based photovoltaic generation system with maximum power tracking control using ANFIS," *IEEE Trans. Sustainable Energy*, vol. 4, no. 1, pp. 11 20, Jan. 2013.