무선전력 전송용 평판 나선형 코일의 최적 형상

강민혁*, 이재우*, 주동명*, 유승희*, 유봉기**, 이병국*[†] *성균관대학교 정보통신대학, **창성

Optimal Structure of Planar Spiral Coil in Inductive Power Transformer

Min Hyuck Kang^{*}, Jae Woo Lee^{*}, Dong Myoung Joo^{*}, Seung Hee Ryu^{*}, Bong Gi Yoo^{**} and Byoung Kuk Lee^{*†}

*College of Information and Communication Engineering, Sungkyunkwan University **ChangSung Corporation

ABSTRACT

본 논문에서는 무선전력 전송을 위한 평판 나선형 코일의 최적 형상 선정을 위해 각 코일의 형태에 따른 출력 성능을 비 교 및 평가한다. 코일 간 결합계수, 각 코일의 Q factor 측면에 서 송수신 패드의 성능을 비교하며, 이를 위해 송수신 패드가 차지하는 면적을 최대한 활용하여 모델링 한다. 모델링한 코일 에 대하여 수신패드의 수직 및 수평이동에 대한 성능 지표를 평가하고 코일의 최적 형상을 선정한다.

1. 서 론

최근 전기자동차의 충전 방식 중 충전단자가 필요없는 무선 충전방법에 대한 관심이 고조되고 있으며 특히, 자기유도 전력 전송 (Inductive Power Transfer) 시스템에 대한 연구가 활발 하게 진행 중이다. 기존의 IPT 연구에서는 코일 사이즈에 제한 을 두지 않았으나 실제 송수신 코일은 차량의 사이즈에 의해 면적이 제한되며, 코일의 형상에 따라 자기 결합정도 및 Q factor가 다른 특성을 갖고 있다^[1]. 따라서 IPT 시스템의 효 율 향상을 위해 최적의 코일 형상을 도출하는 것이 중요하다.

본 논문에서는 무선전력 전송을 위한 평판 나선형 코일의 최적 형상을 선정한다. 각 코일의 형상에 따른 코일 간 결합계 수 *k*, Q factor 측면에서 송수신 패드의 성능을 비교하고 이를 토대로 코일의 최적 형태를 도출한다.

2. 코일의 형태에 따른 성능 평가

2.1 코일의 성능 지표 분석

IPT 시스템의 성능 지표는 크게 송수신 코일 간의 결합계수 k, Q factor로 표현된다. k는 송신 코일에서 발생하는 자속과 수신 코일의 쇄교 정도를 나타내는 지표로 식 (1)과 같다.

$$k = \frac{M}{\sqrt{of L_1 L_2}} \tag{1}$$

M은 코일 간 상호인덕턴스를 나타내며 L₁ 및 L₂는 각 코일 의 자기인덕턴스를 나타낸다. 총 쇄교자속은 코일형상으로 인

그림 1 IPT 시스템의 코일 형상도 Fig. 1 Schematic drawings of the coils in IPT system

해 결정되는 코일 내부 및 코일의 면적에 따라 달라지기 때문 에 송수신 코일의 형상에 따른 *k*의 비교 및 평가가 필요하다.

Q factor는 코일의 저항성분 대비 유도성 리액턴스의 지표 를 나타내며 식 (2)와 식 (3)으로 표현된다.

$$Q = \frac{w_{S}L}{R} \tag{2}$$

$$R = R_{DC} + R_{skin} + R_{prox} \tag{3}$$

Q factor의 증가를 위해 스위칭 주파수 _{W S} 또는 인덕턴스 L의 증가를 고려할 수 있다. _{W S}를 증가시킬 경우, R_{DC}는 도전체의 물성과 기하학적 구조에 의해 결정되기 때문에 주파 수의 영향을 받지 않는다. 그러나 스위칭손실, 표피효과로 인한 등가저항 R_{skin} 및 근접효과로 인한 등가저항 R_{prox} 때문에 전체 손실이 증가한다. R_{skin}과 R_{prox}는 각각 식 (4)와 식 (5)로 표현된다^[1].

$$R_{skin} = \frac{R_{DC}}{n} \cdot F_{R}(f_{o}) \tag{4}$$

$$R_{prox} = n \cdot R_{DC} \cdot G_{R}(f_{o})(\frac{\widehat{H}_{e}}{\Upsilon})^{2} + \frac{1}{2\pi^{2}d_{a}^{2}})$$
(5)

결과적으로, ω_S를 증가시켜도 Q factor가 그에 비례해서 증가 하지 않는다. 또한 인덕턴스를 증가시키기 위해서 코일의 턴 수를 증가시킨다면 코일에 사용되는 구리의 양 및 저항이 동시 에 증가한다. 또한 제한된 면적에서 코일 형상에 따라 동일 인 덕턴스를 얻기 위한 턴 수가 달라진다. 따라서 코일 형상에 따 른 Q factor의 분석 또한 반드시 필요하다. 표 1 형상에 따른 코일 송수신 패드의 Q-factor Table 1 Q-factor with schematic variation of the TX and RX pad

코일의 형상	조건	Q(TX)	Q(RX)
원형	(I)	1636.26	847.40
정사각형	(II)	1367.68	706.81
	(III)	1433.27	670.42
	(III)	1491.24	771.04
직사각형	(I)	1040.46	542.98
	(II)	1062.15	808.31
	(III)	1400.29	962.73

2.2 최적 코일 형상 선정

각 코일의 형태에 따라 성능지표를 비교 및 평가하기 위해 서 송신 패드 및 수신 패드의 크기를 각각 420x420 mm² 및 220x220 mm²으로 구성하고 주어진 면적을 최대한 활용하도록 코일을 구성한다. 송수신 코일의 형상을 그림 1과 같이 구성하 고 각 코일 별 k 및 Q factor 성능을 비교한다. 표 1은 코일 형상에 따른 송수신 코일의 Q factor를 나타낸다. Q factor를 도출하기 위해 식 (3)은 코일을 Litz wire로 구성하여 R_{prox} 를 무시하고 계산하였으며, L은 자기장 해석 Tool의 결과 값 을 식 (2)에 적용하였다. 표 1에서 (I)은 내부면적 동일 조건, (II)는 코일의 면적 동일 조건 및 (III)은 코일 턴 수 동일 조건 을 나타낸다. 표 1에 제시된 바와 같이 정사각형 보다 원형 코 일의 Q factor가 평균적으로 200정도 높고 직사각형 코일 Q factor보다는 600이 높기 때문에 원형 코일이 최적임을 확인 하였다.

그림 2는 조건 별 수신 코일의 수직 및 수평이격거리에 따 른 k의 비교이다. 수직이격에 따른 정사각형 코일의 k는 조건 (I)에서 평균 0.168, 조건 (III)에서 평균 0.167로 다른 코일의 k 보다 우수하다. x축 수평이격에 대한 k는 구조상 직사각형의 코일이 다른 코일보다 다소 높다. 하지만 y축 수평 이격에서 k 의 평균은 원형코일이 0.125, 정사각형 코일이 0.141, 직사각형 코일이 0.120로 직사각형 코일의 k가 다른 코일보다 낮다. 따라 서 k 측면에서는 정사각형 코일의 최적임을 확인할 수 있다. 비록 원형 코일이 정사각형 코일보다 y축 수평이격에서 최대 0.018의 작은 차이로 k 측면에서 더 작았지만, Q factor에서 원 형코일이 정사각형 코일보다 최대 200이상의 큰 차이를 가지므 로 IPT 시스템을 구성하는데 있어 원형코일이 더 합리적이라 고 판단된다.

3. 결 론

본 논문에서는 IPT 시스템의 최적 코일 형상을 도출하기 위 해 코일 별 조건변화에 따른 성능 지표를 비교 및 평가하였다. 정사각형 코일이 *k* 측면에서 우수한 정도와 원형 코일이 Q factor 측면에서 우수한 정도를 비교하였을 때, 최종적으로 원형코일이 다른 형상의 코일에 비해 IPT 시스템에 상대적으 로 적합한 코일 형상임을 확인하였다.

Acknowledgement

본 논문은 (주)창성의 연구비 지원에 의하여 연구되었음.

참 고 문 헌

[1] Bosshard. R, Kolar. J.W, Muhlethaler. J, Stevanovic. I, Wunsch. B, and Canales. F "Modeling and n a Pareto Optimization of Inductive Power Transfer Coils for Electric Vehicles", *IEEE J. Emerg. Sel. Topics Power Electron.*, Vol. 3, no. 1, pp. 50 64, 2015