플라이휠 에너지저장시스템용 영구자석 동기전동기 센서리스 벡터 제어

조현길, 백승길, 안현성, 차한주 충남대학교

PMSM Sensorless Vector Control for Flywheel Energy Storage System

Hyeungil Jo, SeoungGil Baek, Hyunsung An, Hanju Cha Chungnam National University

ABSTRACT

본 논문에서는 영구자석 동기 전동기(PMSM)의 수학적 모델 을 기반으로 한 플라이휠 에너지 저장 시스템을 매트랩/시뮬링 크를 사용하여 모델링 하였다. PMSM의 센서리스 벡터 제어를 위해 속도 및 전류 제어기를 구현하였으며, PI형 상태 관측기 를 이용한 역기전압 추정기와 PLL 기반의 위치/속도 추정기를 구현하였다. 초기 기동시 역기전압 추정기반 센서리스 제어 방 식은 회전자의 위치를 정확히 추종 할 수 없어 Open-Loop 알 고리즘을 통하여 동기 전동기를 구동시킨다. 플라이휠 에너지 저장 시스템의 센서리스 제어 알고리즘은 충전 모드와 발전 모 드에서의 시뮬레이션을 통해 성능을 확인하였다.

1. 서 론

에너지 저장 시스템 중 Flywheel Energy Storage System (FESS)은 전기에너지를 회전운동에너지의 형태로 저장해서, 필요시 전기에너지로 출력하는 시스템이다. 이에 사용되는 동 기 전동기의 제어를 위해서는 회전자의 위치 정보 및 속도가 필수인데, 위치 센서의 사용은 비용 상승 및 전동기의 부피가 커지는 원인이 된다. 이러한 문제를 해결할 목적으로 다양한 센서리스 제어 기법들이 제안되어 왔다. 센서리스 제어는 크게 고주파 신호 주입 방법과 역기전력 추정 방법이 있으나. 고주 파 신호 주입 방법의 경우 정지 상태나 저속 영역에서는 비교 적 빠른 시간 안에 회전자의 위치 추정이 가능하지만, 속도가 높아질수록 주입할 수 있는 추가 전압이 제한되는 점과 계산이 복잡하고 구현이 어렵다는 단점이 있다. 그에 반해 역기전력 추정 기반 센서리스 제어의 경우 정지 및 저속 영역에서는 역 기전력의 크기가 미비하여 별도의 제어 알고리즘이 요구되지 만, 고속 영역에서 역기전력이 크게 나타나 센서리스 제어가 용이하다^{[1][2]}. 본 논문에서는 센서리스 제어 이전 Open-Loop 알고리즘을 통하여 동기 전동기를 기동 후 역기전력이 충분히 생성되면 역기전력 추종을 기반으로한 센서리스 제어를 적용하 여 플라이휠 에너지 저장 시스템의 충전 모드와 발전 모드로 동작하는 시스템을 구성하고 성능을 확인한다.

2. 플라이휠 에너지 저장 시스템

FESS는 전기 에너지를 입력받아 충전 모드로 동작하여 플 라이휠 회전체에 기계 에너지를 축적하고, 필요시 발전 모드로

전환하여 축적된 기계 에너지를 전기 에너지로 전환시킨다. 그 림 1은 FESS의 구조를 나타낸다. 충전 모드일 때는 계통으로 부터 나온 전압이 인버터를 거쳐 DC-Link를 충전한 후, 다시 인버터를 통해 나온 AC 전압을 가지고 전동기를 회전 시킨다. 발전 모드일 때는 FESS에 충전되었던 운동 에너지가 전기 에 너지로 변환되어 Back-to-Back 형태의 인버터를 거친 후 계통 에 전력을 공급한다.

3. 역기전력 추정 기반 센서리스 제어 알고리즘

전동기를 제어하는데 있어서 원하는 기계적 출력을 얻기 위 해서는 전동기의 위치, 속도, 전류 등을 제어해야한다. 그림 2 는 센서리스 벡터제어에 대한 구성을 보여주고 있으며, 전류 제어기는 PI 제어기를 적용하였고 속도 제어기의 경우 IP 제어 기를 적용하였다. 또한, 동기전동기의 회전자 위치 및 속도 정 보를 위한 위치 및 속도 추정기를 구성하였다. 역기전력 기반 센서리스 알고리즘의 일반적인 구성은 인버터의 전압 지령

그림 2 센서리스 벡터 제어 구조 Fig. 2 structure of sensorless vector control

(v_{cmd}), 상전류(i) 및 영구자석 동기 전동기의 수학적 모델을 이용하여 추정한 역기전력(e_{est})를 가지고 회전자의 위치 (θ_{r-est}) 및 속도(ω_{r-est})를 추정한다^[1]. 역기전력 기반의 센서리 스 제어의 경우, 전동기가 정지 또는 극 저속에서는 역기전력 의 크기가 미비하므로 제대로 된 제어가 불가능하다. 이에 따 라 초기 기동시 Open-Loop 전류 제어를 이용하여 동기 전동 기를 기동시킨다. 실제 전류와 추정 전류의 오차를 보상하기 위하여 PI 제어기를 사용하였다. 제어기 구성은 그림 3과 같다.

그림 3 PI형 상태 관측기를 이용한 역기전압 추정기 구조 Fig. 3 structure of back-EMF estimator using PI type state filter

PI형 상태 관측기를 통하여 추정되는 역기전력 추정치 $E(s)_{est}$ 는 식 (1)과 같이 표현 가능하다.

$$E_{est}(s) = -\left[\left(\frac{V(s) - E(s)}{L_s s + R}\right) - \left(\frac{V(s) - E_{est}(s)}{L_s s + R}\right)\right] \frac{K_p s + K_i}{s}$$

(1)

식 (1)에서 P 제어기의 이득을 $K_p = L_s \omega_{est}$, I 제어기의 이 득으로 $K_i = R \omega_{est}$ 로 설정하면 역기전력 추정치를 구할 수 있다.

식 (1)를 통하여 구한 역기전압을 통하여 식 (2)와 같은 제 어 위상각 오차 △*θ*, 구해진다.

$$\Delta \theta_r = \tan^{-1} \left(\frac{-E_{d_est}}{E_{q_est}} \right) \tag{2}$$

식 (2)로 구한 회전자 추정 위치는 역기전력의 변화에 민감 하게 동작하므로 이러한 단점을 보완하기 위해 PLL 기법을 사 용한다. PLL 제어에 의해 추정 위치 θ_{r_est} 를 추정하도록 추정 속도 ω_{r_est} 를 계산하고, 다시 ω_{r_est} 를 적분하여 추정 위치를 얻는다.

4. 시뮬레이션

그림 4는 매트랩/시뮬링크를 이용하여 구현한 전체 시스템 구조이다. 시뮬레이션에서는 초기 6000rpm까지 승속하여 정상 상태에 도달한 후, 미리 설정한 시간부터 0rpm으로 감속하는

충/발전 모드를 구현하였다. 초기 기동 시에는 전류 제어로 동 기 전동기가 기동을 시작하고 역기전력 추정이 제대로 이루어 진 시점부터 센서리스 제어로 전환하였다. 그림 5는 실제 회전 자 속도 추정치의 파형으로, 가속구간(a)와 정상상태구간(b)에 서 회전자의 위치가 제대로 추정되는 것을 확인하였다. 그림 6 은 전동기의 정지 및 저속 영역까지 전류 제어로 기동한 이후 센서리스 벡터 제어로 전환하여 동기 전동기의 속도, 역기전력, 전류(Iq)가 모드에 따라 제대로 동작하는 것을 확인하였다.

그림 5 속도에 따른 실제 및 추정 회전자 위치 (a) 승속 구간 (b) 정상 상태 구간

5. 결 론

본 논문에서는 플라이휠 에너지 저장 시스템용 영구자석 동 기 전동기의 센서리스 제어 알고리즘을 제안하였다. 초기 기동 시 전류 제어로 기동 후, PI 상태 관측기 기반 역기전압 추정 기와 PLL 기반 회전자 속도 및 위치 추정기의 알고리즘을 구 성하여 시뮬레이션을 통해 플라이휠의 충전 모드와 발전 모드 의 성능을 확인하였다.

참 고 문 헌

- [1] 이광운, 이용재, 하정익, "영구자석 동기 전동기의 역기전력 기반 센서리스 알고리즘 분석", 전력전자학회 2011년도 하 계 학술대회 논문집, pp. 204-205, 2011. July
- [2] Sonia Thomas, Dominic Mathew, "Simulation of I-F Starting of PMSM Drive", IJAREEIE, Vol. 2, Issue 8, pp. 4079–4090, 2013, August.