## 컴퓨터 시뮬레이션을 터보 분자 펌프 동작 특성 해석

# Characterization of turbo molecular pump design by a computational simulation

주정훈<sup>a,b\*</sup>

a\*군산대학교 신소재공학과(E-mail:jhjoo@kunsan.ac.kr), <sup>b</sup>군산대학교 플라즈마 융합공학대학원

초록: 터보 분자 펌프는 수 만 rbm의 고속으로 회전하여 분자 유동 영역에서 효율적으로 기체를 배기하는 특성을 가지고 있지만 실제 플라즈마 공정에서는 챔버의 압력이 수 mTorr이상이므로 점성 유동 영역이나 전이 유동 영역에 해당한다. 따 라서 터보 분자 펌프의 rotor, blade, stator등의 설계가 점성 유동 영역에서 반응성 가스 및 플라즈마 특성에 의해서 어떤 영향을 받는지 수치 모델을 통하여 해석을 시도하였다.

### 1. 서론

터보 분자 펌프는 좁은 간격을 갖는 rotor blade 및 stator를 수치 해석이 가능하도록 기하구조 모델을 만드는 작업이 매우 중요하다. 기계 공학에서 접근하는 경우에는 고체 부분만 격자를 생성하여 계산하므로 훨씬 가단하다. 전산 유체 모 델은 다수의 비선형적인 미분 방정식들을 기본으로 한다. 입자 수 보존식, 드리프트-확산식, 에너지 보존 균형식이 다. 전자에 대해서 외부의 전원으로부터 전력 흡수를 고려 하고, 기상에서 일어나는 전자 참여 반응은 비활성 원자 기체의 경우 이온화 및 여기 반응만 고려하면 되지만 반응 성 분자 가스의 경우 다양한 해리 반응들을 고려하여야 하 므로 확산 계수, 열역학 상수가 최대한 정확하게 구해져야 한다. 이 때 장치의 기하적 구조가 전기장의 분포 및 하 전, 중성 입자들의 공간적 분포에 영향을 미친다. 본 연구 에서는 다중 세트를 갖는 rotor - stator 구조를 구현하고 기본적인 유동 특성을 점성 유동 영역인 10 mTorr에서 파 악하고 플라즈마에서 입사되는 이온과 라디칼의 거동에 대 해서 모델링 하였다.

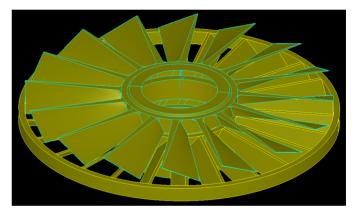



Fig. 1 터보 분자 펌프의 수치 모델

#### 2. 본론

기하적 구조 작성 및 해석은 ESI사의 CFD-ACE+를 사용하였다. 플라즈마 방정식의 경우에는 전위를 계산하는 Poisson 방정 식을 풀지 않고 플라즈마의 중성 조건을 적용하여 간략화하는 방법을 택하였다. 이는 플라즈마의 특징 가운데 하나인 전 공간에서의 준중성 조건(양의 전하와 음의 전하가 균형을 이루는 조건)을 적용하여 수식을 간략화 한 것이다. 플라즈마 공 정에 사용되는 터보 분자 펌프의 경우 blade의 재료로 가벼운 알루미늄 합금을 사용하고 표면은 부동태 피막 처리나 부식 성 가스에 안정적인 물질을 코팅하여 사용한다. 기계식 베어링을 사용하는 경우에는 rotor module이 전기적으로 접지된 상 태에 있으나 자기 부상식 터보 분자 펌프의 경우에는 전기적으로 부동 상태에 있다. 이 경우 이온들이 rotor module의 표 면에서 전하를 받아서 재결합 할 확률이 떨어진다. 지속적인 플라즈마 노출 상태가 가져오는 rotor module의 하전 상태에 대해서 계산하였고 이를 근거로 아킹이 발생할 확률에 대해서 분석하였다.

#### 3. 결론

플라즈마 공정에 사용되는 터보 분자 펌프의 기본적인 점섬 유동 특성을 분석하고 플라즈마 영역에서 유입되는 이온과 들 뜬 상태의 라디칼의 거동에 대해서 플라즈마 유체 모델을 준중성 조건하에서 간략화 하여 적용하였다. Rotor blade와 stator blade의 1 set에 대해서 모델 계산을 시행한 결과 표면에서 금속의 일반적인 경우와 같이 100% 전하 교환 재결합이 일어난다고 가정했을 때 1 set를 지나면 이온의 농도는 1 order 정도 감소하는 것으로 나타났다.