Numerical simulation of flow around two circular cylinders in various arrangements

HUY CONG VU*, JIN HWAN HWANG**

Abstract

The results of flow feature around two circular cylinders in various arrangements are carried out using two-dimensional simulation at Reynolds number of 200. In this work, time-averaged fluid force acting on the upstream and downstream cylinders were calculated for staggered angle $a=0 \sim 90^{\circ}$ in the range of $L / D=1.1 \sim 5$, where a is the angle between the free-stream flow and the line connecting the centers of the cylinders, L is centre-to-centre distance and D is cylinder diameter. The dependence of magnitudes and trends of fluid force coefficient on the spacing ratio L / D and a are discussed. In all arrangements of two cylinders, tandem arrangement $\left(a=0^{\circ}\right)$ is the case produced a minimum drag coefficient for downstream cylinder. Moreover, the locations of separation and stagnation points or pressure coefficient on surface of the cylinder were examined. Acknowledgement: "This research was a part of the project titled 'Development of integrated estuarine management system', funded by the Ministry of Oceans and Fisheries, Korea."

Key words: Cylinders, drag force, lift force.

[^0]
[^0]: *PhD candidate, Department of Civil \& Environmental Engineering, Dongguk University, Seoul, Republic of Korea,
 Email: vhcongtltd@yahoo.com.vn
 ** Professor, Department of Civil \& Environmental Engineering, Seoul National University, Seoul, Republic of Korea, E-mail: jinhwang@snu.ac.kr

