Numerical simulation of flow around two circular cylinders in various arrangements

	A1	netract		

HUY CONG VU*, JIN HWAN HWANG**

The results of flow feature around two circular cylinders in various arrangements are carried out using two-dimensional simulation at Reynolds number of 200. In this work, time-averaged fluid force acting on the upstream and downstream cylinders were calculated for staggered angle $a = 0 \sim 90^{\circ}$ in the range of $L/D = 1.1 \sim 5$, where a is the angle between the free-stream flow and the line connecting the centers of the cylinders, L is centre-to-centre distance and D is cylinder diameter. The dependence of magnitudes and trends of fluid force coefficient on the spacing ratio L/D and a are discussed. In all arrangements of two cylinders, tandem arrangement ($a = 0^{\circ}$) is the case produced a minimum drag coefficient for downstream cylinder. Moreover, the locations of separation and stagnation points or pressure coefficient on surface of the cylinder were examined. Acknowledgement: "This research was a part of the project titled 'Development of integrated estuarine management system', funded by the Ministry of Oceans and Fisheries, Korea."

Key words: Cylinders, drag force, lift force.

^{*}PhD candidate, Department of Civil & Environmental Engineering, Dongguk University, Seoul, Republic of Korea, Email: vhcongtltd@yahoo.com.vn

^{**} Professor, Department of Civil & Environmental Engineering, Seoul National University, Seoul, Republic of Korea, E-mail: jinhwang@snu.ac.kr